Evrim Ataman
External collaborator
Publications
Simula-affiliated publications listed
2023
Journal Articles
F. Becker, A. K. Smilde and E. A. Ataman
Unsupervised EHR-based Phenotyping via Matrix and Tensor Decompositions
WIREs Data Mining and Knowledge Discovery
Proceedings, refereed
C. Chatzis, M. Pfeffer, P. Lind and E. A. Ataman
A Time-aware Tensor Decomposition for Tracking Evolving Patterns
MLSP'23: IEEE International Workshop on Machine Learning for Signal Processing
C. Schenker, X. Wang and E. A. Ataman
PARAFAC2-based coupled Matrix and Tensor Factorizations
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Talks, invited
E. A. Ataman
Constrained Multimodal Data Mining using Coupled Matrix and Tensor Factorizations
Acceleration and Extrapolation Methods, ICERM, Brown University
E. A. Ataman
Extracting Insights from Complex Data: Constrained Multimodal Data Mining using Coupled Matrix and Tensor Factorizations
IPAM Workshop on Explainable AI for the Sciences: Towards Novel Insights
C. Chatzis, M. Pfeffer, P. Lind and E. A. Ataman
A Time-aware tensor decomposition for tracking evolving patterns
IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP 2023)
2022
Journal Articles
M. Roald, C. Schenker, V. D. Calhoun, T. Adali, R. Bro, J. E. Cohen and E. A. Ataman
An AO-ADMM approach to constraining PARAFAC2 on all modes
SIAM Journal on Mathematics of Data Science
L. Li, S. Yan, B. M. Bakker, H. Hoefsloot, B. Chawes, D. Horner, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Analyzing postprandial metabolomics data using multiway models: A simulation study
bioRxiv
L. Li, H. Hoefsloot, A. A. de Graaf, E. A. Ataman and A. K. Smilde
Exploring Dynamic Metabolomics Data With Multiway Data Analysis: a Simulation Study
BMC Bioinformatics
M. Fida, M. Roald, E. A. Ataman and A. Elmokashfi
Modeling Variation in Mobile Download Speed in Presence of Missing Samples
IEEE Transactions on Mobile Computing
T. Adali, F. Kantar, M. A. B. S. Akhonda, S. Strother, V. D. Calhoun and E. A. Ataman
Reproducibility in Matrix and Tensor Decompositions: Focus on Model Match, Interpretability, and Uniqueness
IEEE Signal Processing Magazine
E. A. Ataman, M. Roald, K. M. Hossain, V. D. Calhoun and T. Adali
Tracing Evolving Networks using Tensor Factorizations vs. ICA-based Approaches
Frontiers in Neuroscience
Proceedings, refereed
I. Lehmann, E. A. Ataman, T. Hasija, M. Akhonda, V. D. Calhoun, P. J. Schreier and T. Adali
Multi-task FMRI Data Fusion using IVA and PARAFAC2
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
F. Becker, M. Nygård, J. Nygård, A. K. Smilde and E. A. Ataman
Phenotyping of cervical cancer risk groups via generalized low-rank models using medical questionnaires
Norwegian AI Symposium: Nordic Artificial Intelligence Research and Development
Posters
S. Yan, L. Li, D. Horner, B. Chawes, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Characterizing postprandial metabolic response using multi-way data analysis
Norwegian Bioinformatics Days 2022
L. Li, S. Yan, B. M. Bakker, H. Hoefsloot, B. Chawes, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Revealing dynamic changes in metabolism through the analysis of postprandial metabolomics data: A simulation study
Metabolomics 2022
Talks, invited
C. Schenker, M. Roald, X. Wang, J. E. Cohen and E. A. Ataman
Constrained Multi-Modal Data Mining Using Coupled Matrix and Tensor Factorizations
SIAM Conference on Mathematics of Data Science
E. A. Ataman
Constrained Multimodal Data Mining
BigInsight Seminar, University of Oslo, Norway
E. A. Ataman
Extracting Insights from Complex Data: Data Mining using Tensor Factorizations
SILS (Swammerdam Institute for Life Sciences) Data Science Symposium, University of Amsterdam, Netherlands
Talks, contributed
E. A. Ataman
A Flexible Framework for Coupled Matrix/Tensor Factorizations
TRICAP: Three-way methods In Chemistry And Psychology
M. Roald, C. Schenker, V. D. Calhoun, T. Adali, R. Bro, J. E. Cohen and E. A. Ataman
An AO-ADMM approach to constrained PARAFAC2
Nordic AI Meet
L. Li, S. Yan, B. M. Bakker, H. Hoefsloot, B. Chawes, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Analyzing postprandial metabolomics data using multiway models: A simulation study
NuGOweek 2022 in Spain
L. Li, S. Yan, B. M. Bakker, H. Hoefsloot, D. Horner, B. Chawes, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Analyzing postprandial metabolomics data using multiway models: A simulation study
Nordic Metabolomics 2022, Copenhagen, Denmark
L. Li, S. Yan, B. M. Bakker, H. Hoefsloot, D. Horner, B. Chawes, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Analyzing postprandial metabolomics data using multiway models: A simulation study
Norwegian Bioinformatics Days, Sundvolden, Norway
S. Yan, L. Li, D. Horner, B. Chawes, M. A. Rasmussen, A. K. Smilde and E. A. Ataman
Characterizing postprandial metabolomics response using multi-way data analysis
Annual NORBIS Conference
M. Roald, C. Schenker, R. Bro, J. E. Cohen and E. A. Ataman
Fully Constrained PARAFAC2 with AO-ADMM
SIAM Conference on Parallel Processing for Scientific Computing
2021
Journal Articles
C. Schenker, J. E. Cohen and E. A. Ataman
A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations with Linear Couplings
IEEE Journal of Selected Topics in Signal Processing
Proceedings, refereed
M. Roald, C. Schenker, J. E. Cohen and E. A. Ataman
PARAFAC2 AO-ADMM: Constraints in all modes
2021 29th European Signal Processing Conference (EUSIPCO)
Posters
C. Schenker, J. E. Cohen and E. A. Ataman
An Optimization Framework for Regularized Linearly Coupled Matrix-Tensor Factorization
Talks, invited
C. Schenker, J. E. Cohen and E. A. Ataman
A Flexible Optimization Framework for Regularized Linearly Coupled Matrix-Tensor Factorizations based on the Alternating Direction Method of Multipliers
Europt21, 18th Workshop on Advances in Continuous Optimization
C. Schenker, J. Cohen and E. A. Ataman
An Optimization Framework for Regularized Linearly Coupled Matrix-Tensor Factorization
SIAM Conference on Applied Linear Algebra (LA21)
E. A. Ataman
From Data Mining using Tensor Factorizations to Multimodal Data Mining using Coupled Matrix/Tensor Factorizations
Nordic Probabilistic AI School (virtual)
Talks, contributed
C. Schenker, M. Roald, J. E. Cohen and E. A. Ataman
A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations with Linear Couplings
Asilomar Conference on Signals, Systems, and Computers
L. Li, H. Hoefsloot, A. A. de Graaf, E. A. Ataman and A. K. Smilde
Exploring dynamic metabolomics data with multiway data analysis: A simulation study
SIAM Conference on Applications of Dynamical Systems
F. Becker
Generalized Low-Rank Models for Phenotyping Cervical Cancer Risk Groups using Medical Questionnaires
Stavanger, Norway
M. Roald, C. Schenker, J. E. Cohen and E. A. Ataman
Tracing Dynamic Networks through Constrained Parafac2 Decomposition
SIAM Conference on Applied Linear Algebra (LA21), Virtual Conference
2020
Journal Articles
J. Camacho, E. A. Ataman, M. A. Rasmussen and R. Bro
Cross-product penalized component analysis (X-CAN)
Chemometrics and Intelligent Laboratory Systems
J. Geddes, G. T. Einevoll, E. A. Ataman and A. J. Stasik
Multi-Linear Population Analysis (MLPA) of LFP Data Using Tensor Decompositions
Frontiers in Applied Mathematics and Statistics
Proceedings, refereed
C. Schenker, J. E. Cohen and E. A. Ataman
An Optimization Framework for RegularizedLinearly Coupled Matrix-Tensor Factorization
European Signal Processing Conference (EUSIPCO)
M. Roald, S. Bhinge, C. Jia, V. Calhoun, T. Adali and E. A. Ataman
Tracing Network Evolution Using The Parafac2 Model
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Book Chapters
G. Tomasi, E. A. Ataman and R. Bro
Multilinear Models, Iterative Methods
Comprehensive Chemometrics (Second Edition)
Talks, invited
E. A. Ataman
Multi Modal Data Mining using Coupled Matrix/Tensor Factorizations
Tufts University - TRIPODS Seminar (virtual)
2019
Journal Articles
E. A. Ataman, G. Gurdeniz, B. Khakimov, F. Savorani, S. K. Korndal, T. M. Larsen, S. B. Engelsen, A. Astrup and L. O. Dragsted
Biomarkers of individual foods, and separation of diets using untargeted LC-MS based plasma metabolomics in a randomized controlled trial
Molecular Nutrition & Food Research
E. A. Ataman, C. Schenker, Y. Levin-Schwartz, V. D. Calhoun and T. Adali
Unraveling Diagnostic Biomarkers of Schizophrenia Through Structure-Revealing Fusion of Multi-Modal Neuroimaging Data
Frontiers in Neuroscience
Proceedings, refereed
M. Fida, E. A. Ataman and A. Elmokashfi
Multiway Reliability Analysis of Mobile Broadband Networks
the Internet Measurement ConferenceProceedings of the Internet Measurement Conference on - IMC '19
Talks, invited
E. A. Ataman, C. Schenker, Y. Levin-Schwartz, V. D. Calhoun and T. Adali
Biomarker Discovery through Structure-Revealing Fusion of Multi-Modal Neuroimaging Data
IEEE EMBC (Engineering in Medicine and Biology Conference), Berlin, Germany
E. A. Ataman
Unraveling Biomarkers through Multi-Modal Data Fusion
IEEE ISMICT (International Symposium on Medical Information and Communication Technology), Oslo, Norway
E. A. Ataman
Unraveling Interpretable Patterns through Data Fusion based on Coupled Matrix and Tensor Factorizations
KDD Workshop on Tensor Methods for Emerging Data Science Challenges, Anchorage, Alaska, USA
E. A. Ataman
Unraveling Interpretable Patterns through Data Fusion based on Coupled Matrix and Tensor Factorizations
AI and Tensor Factorizations for Physical, Chemical, and Biological Systems, Santa Fe, NM, USA
2018
Journal Articles
U. Wünsch, E. A. Ataman, B. P. Koch, K. Murphy, P. Schmitt-Kopplin and C. A. Stedmon
The molecular fingerprint of fluorescent natural organic matter offers insight into biogeochemical sources and diagenetic state
Analytical Chemistry
Talks, invited
E. A. Ataman
Data Fusion based on Coupled Matrix and Tensor Factorizations
5th Conference on Constraint-Based Reconstruction and Analysis (COBRA 2018), Seattle, USA
E. A. Ataman
Tutorial on Tensor Factorizations, Data Fusion & Applications
14th International Conference on Latent Variable Analysis and Signal Separation, Guildford, UK
Talks, contributed
E. A. Ataman
Structure-Revealing Data Fusion Models based on Coupled Matrix and Tensor Factorizations and Their Applications
Three‐way Methods in Chemistry and Psychology (TRICAP), New Mexico, USA
E. A. Ataman
Structure-Revealing Data Fusion Models based on Coupled Matrix and Tensor Factorizations and Their Applications
TRICAP: Three-way methods In Chemistry And Psychology
2017
Journal Articles
A. K. Smilde, I. Måge, T. Naes, T. Hankemeier, M. A. Lips, H. A. L. Kiers, E. A. Ataman and R. Bro
Common and distinct components in data fusion
Journal of Chemometrics
E. A. Ataman, G. Gürdeniz, F. Savorani, L. Hansen, A. Olsen, A. Tjønneland, L. O. Dragsted and R. Bro
Forecasting Chronic Diseases Using Data Fusion
Journal of Proteome Research
Proceedings, refereed
E. A. Ataman, Y. Levin-Schwartz, V. Calhoun and T. Adali
ACMTF for Fusion of Multi-Modal Neuroimaging Data and Identification of Biomarkers
EUSIPCO 2017: Proceedings of the 25th European Signal Processing Conference
E. A. Ataman, Y. Levin-Schwartz, V. D. Calhoun and T. Adal?
Tensor-Based Fusion of EEG and FMRI to Understand Neurological Changes in Schizophrenia
ISCAS 2017: Proceedings of IEEE International Symposium on Circuits and Systems