Inga Strümke
External collaborator
Publications
Simula-affiliated publications listed
2023
Journal Articles
A. Storås, O. E. Andersen, S. Lockhart, R. Thielemann, F. Gnesin, V. Thambawita, S. Hicks, J. Kanters, I. Strümke, P. Halvorsen and M. Riegler
Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis
Diagnostics
Proceedings, refereed
A. Storås, M. Magnø, F. Fineide, B. Thiede, X. Chen, I. Strümke, P. Halvorsen, T. Utheim and M. Riegler
Identifying Important Proteins in Meibomian Gland Dysfunction with Explainable Artificial Intelligence
IEEE International Symposium on Computer-Based Medical Systems (IEEE CBMS2023)
2022
Journal Articles
A. Storås, I. Strümke, M. Riegler, J. Grauslund, H. L. Hammer, A. Yazidi, P. Halvorsen, K. G. Gundersen, T. P. Utheim and C. J. Jackson
Artificial intelligence in dry eye disease
The Ocular Surface
A. Storås, R. Prabhu, H. L. Hammer and I. Strümke
Bias og kvantitativ analyse innen velferd
Tidsskrift for velferdsforskning
S. Hicks, I. Strümke, V. Thambawita, M. Hammou, M. Riegler, P. Halvorsen and S. Parasa
On evaluation metrics for medical applications of artificial intelligence
Scientific Reports
J. Amann, D. Vetter, S. N. Blomberg, H. C. Christensen, M. Coffee, S. Gerke, T. K. Gilbert, T. Hagendorff, S. Holm, M. Livne, A. Spezzatti, I. Strümke, R. V. Zicari and V. I. Madai
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
PLOS Digital Health
Proceedings, refereed
C. Midoglu, A. Storås, S. S. Sabet, M. Hammou, S. Hicks, I. Strümke, M. Riegler, C. Griwodz and P. Halvorsen
Experiences and Lessons Learned from a Crowdsourced-Remote Hybrid User Survey Framework
2022 IEEE International Symposium on Multimedia (ISM)
A. Storås, I. Strümke, M. Riegler and P. Halvorsen
Explainability methods for machine learning systems for multimodal medical datasets: research proposal
ACM Multimedia Systems (MMSys) Conference
M. Hammou, C. Midoglu, S. Hicks, A. Storås, S. S. Sabet, I. Strümke, M. Riegler and P. Halvorsen
Huldra: A Framework for Collecting Crowdsourced Feedback on Multimedia Assets
Proceedings of the 13th ACM Multimedia Systems Conference (MMSys '22)
A. Storås, A. Åsberg, P. Halvorsen, M. Riegler and I. Strümke
Predicting Tacrolimus Exposure in Kidney Transplanted Patients Using Machine Learning
35th IEEE CBMS International Symposium on Computer-Based Medical Systems
Posters
A. Storås, M. Riegler, P. Halvorsen, A. Åsberg and I. Strümke
Predicting drug exposure in kidney transplanted patients using machine learning
Talks, invited
A. Storås, I. Strümke, M. Riegler and P. Halvorsen
Explainable Artificial Intelligence in Medicine
Nordic AI Meet 2022
Public outreach
O. Lysne, I. Strümke and M. Riegler
Data samlet fra åpne kilder er ikke ufarlig
Miscellaneous
S. Hicks, A. Storås, M. Riegler, C. Midoglu, M. Hammou, T. de Lange, S. Parasa, P. Halvorsen and I. Strümke
Visual explanations for polyp detection: How medical doctors assess intrinsic versus extrinsic explanations
2021
Journal Articles
V. Thambawita, J. L. Isaksen, S. Hicks, J. Ghouse, G. Ahlberg, A. Linneberg, N. Grarup, C. Ellervik, M. S. Olesen, T. Hansen, C. Graff, N. Holstein-Rathlou, I. Strümke, H. L. Hammer, M. Maleckar, P. Halvorsen, M. Riegler and J. K. Kanters
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
Nature Scientific Reports
V. Thambawita, J. L. Isaksen, S. Hicks, J. Ghouse, G. Ahlberg, A. Linneberg, N. Grarup, C. Ellervik, M. S. Olesen, T. Hansen, C. Graff, N. Holstein-Rathlou, I. Strümke, H. L. Hammer, M. Maleckar, P. Halvorsen, M. Riegler and J. K. Kanters
DeepFake electrocardiograms: the key for open science for artificial intelligence in medicine
Scientific Reports
S. Hicks, J. L. Isaksen, V. Thambawita, J. Ghouse, G. Ahlberg, A. Linneberg, N. Grarup, I. Strümke, C. Ellervik, M. S. Olesen, T. Hansen, C. Graff, N. Holstein-Rathlou, P. Halvorsen, M. Maleckar, M. Riegler and J. K. Kanters
Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
Scientific Reports
V. Thambawita, I. Strümke, S. Hicks, P. Halvorsen, S. Parasa and M. Riegler
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
Diagnostics
D. V. Fryer, I. Strümke and H. Nguyen
Model independent feature attributions: Shapley values that uncover non-linear dependencies
PeerJ Computer Science
D. Fryer, I. Strümke and H. Nguyen
Shapley Values for Feature Selection: The Good, the Bad, and the Axioms
IEEE Access
I. Strümke, M. Slavkovik and V. I. Madai
The social dilemma in artificial intelligence development and why we have to solve it
AI and Ethics
Proceedings, refereed
V. Thambawita, I. Strümke, S. Hicks, M. Riegler, P. Halvorsen and S. Parasa
Data Augmentation Using Generative Adversarial Networks For Creating Realistic Artificial Colon Polyp Images
DDW 2021
V. Thambawita, S. Hicks, I. Strümke, M. Riegler, P. Halvorsen and S. Parasa
Impact of Image Resolution on Convolutional Neural Networks Performance in Gastrointestinal Endoscopy
DDW 2021
Book Chapters
I. Strümke, S. Hicks, V. Thambawita, D. Jha, S. Parasa, M. Riegler and P. Halvorsen
Artificial Intelligence in Gastroenterology
Artificial Intelligence in Medicine
2020
Journal Articles
D. Fryer, I. Strümke and H. Nguyen
Shapley Value Confidence Intervals for Attributing Variance Explained
Frontiers in Applied Mathematics and Statistics
D. Fryer, I. Strümke and H. Nguyen
Shapley Value Confidence Intervals for Attributing Variance Explained
Frontiers in Applied Mathematics and Statistics