NorNet at Hainan University in 2021: Getting Started with NorNet Core

A Remote Tutorial

Thomas Dreibholz (托马斯博士)

Simula Research Laboratory

15 January 2021
Contents

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
Overview:
Preparations

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
Tutorial Accounts

- You should have received an account
 - Username
 - Password
- Valid for:
 - SSH login server
 - PLC server

Do you have an account? If not, ask!
Initial Tasks

- **Account for our SSH login server** gatekeeper.nntb.no:
 - Server is gateway into NorNet Core network
 - `ssh <username>@gatekeeper.nntb.no`

- Use port forwarding to access PLC and Monitor servers:
 - Forwards TCP port 2000 to PLC server's HTTPS port
 - Forwards TCP port 2001 to Monitor server's HTTP port

- **Account for the PLC server** plc.simula.nornet (inside NorNet Core only):
 - Login: `<your e-mail address>`

- VPN into NorNet Core may be possible in the future

Try to directly connect to your NorNet Core switch
Access to PLC and Monitor

- Via port forwarding:
 - PLC: https://localhost:2000/

- Inside NorNet Core network:
 - Monitor: http://monitor.simula.nornet
 - PLC: https://plc.simula.nornet

Is everybody able to log in?
Overview:
Getting an Overview of the Testbed

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
See http://monitor.simula.nornet within NorNet Core!
See https://plc.simula.nornerl within NorNet Core!
PLC User Interface: Nodes View

Node state: should be “boot”
PLC User Interface: Account View

- Upload your SSH public key here!
- Public keys get distributed to all nodes (may take up to 1 hour!)
Overview:
Using a Slice

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
The Test Slice *srl_test*

- A test slice has already been created:
 - Name: *srl_test*
 - Special NorNet Core properties:
 - Own IP addresses on each node
 - IPv4 and IPv6
 - Multiple ISPs (at sites with several ISPs)
 - The slice is instantiated on all nodes by a sliver (LXC container)
 - Your account is mapped as user to *srl_test*
Logging In

- **From the login server:**


  ```
  ssh -i <your private key> <slice name>@<node name>
  ```

- **Examples (private key is in ~/.ssh/id_rsa, slice is srl_test):**

  ```
  ssh -i ~/.ssh/id_rsa srl_test@boao.hu.nornet
  ssh -i ~/.ssh/id_rsa srl_test@altenessen.ude.nornet
  ssh -i ~/.ssh/id_rsa srl_test@nordlys.unis.nornet
  ssh -i ~/.ssh/id_rsa srl_test@julenisse.uia.nornet
  ssh -i ~/.ssh/id_rsa srl_test@vaenern.kau.nornet
  ssh -i ~/.ssh/id_rsa srl_test@vaekeroe.simula.nornet
  ```

- **Note:** login is via node's SSH server to sliver on the node!

Use PLC to find other nodes. There are more than 100 nodes!
Note the Different Entities:
Server, Node, Sliver

ssh <Slice>@<Node>

Server (physical)

Node (virtual)
- Sliver hu_multipath
- Sliver srl_test
- Sliver ntnu_test
- Sliver due_rserpool
- Sliver uib_mptcp
- ...

Slice:
- User list
- Node list

Node (virtual)

Sliver = an instance of a slice on a node

Forwarding to sliver!
Inside a Sliver

- Each sliver contains a Fedora Core 25 environment

- **Obtain root access:**
 - su
 - sudo bash

- **Install custom software:**
 - dnf install <package> ...
 - Example: dnf install netperfmeter

- **Show IP addresses and routes:**
 - ip -4 addr show ; ip -4 route show
 - ip -6 addr show ; ip -6 route show

Remember: slivers have their own addresses!
Nodes, Slivers and Addresses

- **Node:**
 - The node itself, e.g. amundsen.uit.nornet
 - Used for SSH login

- **How to find sliver addresses of a node?**
 - Look inside the sliver itself (login to sliver → ip addr show)
 - Ask the DNS server:
 - Use “dig” (part of bind-utils package for Fedora Core)
 - `dig <slice name>.<node name>.<site name>.nornet`
 - But replace “_” by “–” in slice name!
 - Examples for srl_test slice:
 - `dig srl-test.boao.hu.nornet any` to obtain primary provider (it is in the CNAME, here: “cernet”)
 - `dig srl-test.boao.all.hu.nornet any` to obtain all providers' addresses
 - `dig srl-test.solvang.all.simula.nornet` without “any” → gets only A RRs (i.e. IPv4 addresses)
A *dig* Example

```
olal@nordberg:~$ dig srl-test.solvang.all.simula.nornet any

;; DiG 9.9.2-P1 <<>> srl-test.solvang.all.simula.nornet any

;; ANSWER SECTION:
srl-test.solvang.all.simula.nornet. 86400 IN A 10.2.1.130
srl-test.solvang.all.simula.nornet. 86400 IN A 10.1.1.130
srl-test.solvang.all.simula.nornet. 86400 IN AAAA 2001:700:4100:101::82:69
srl-test.solvang.all.simula.nornet. 86400 IN AAAA 2001:700:4100:201::82:69
srl-test.solvang.all.simula.nornet. 86400 IN HINFO "Amiga 5000" "Slice srl_test"
srl-test.solvang.all.simula.nornet. 86400 IN LOC 59 53 45.240 N 10 37 39.360 E 15.00m

;; AUTHORITY SECTION:
simula.nornet. 86400 IN NS ns.ntnu.nornet.
```
A Practical Example

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
A Multi-Path Routing Test

- Select two nodes at different sites
 - List: https://www.nntb.no/pub/nornet-configuration/NorNetCore-Sites.html
 - Login to srl_test sliver: ssh srl_test@<node name>
 - Check IP addresses: ip -4 addr show dev eth0
 - Example:
 - srl-test.kettwig.ude.nornet: 10.30.42.122 10.31.42.122
 - ISPs: 30=DFN, 31=Versatel (an ADSL connection)
 - srl-test.frogner.simula.nornet: 10.1.1.131 10.2.1.131 10.4.1.131 10.9.1.131
 - ISPs: 1=UNINETT, 2=Kvantel, 4=Telenor, 9=PowerTech
 - Try ping/traceroute:
 - ping [-f] [-s <size>] [-c <count>] <dest IP> -I <src IP>
 - traceroute <dest IP> -s <src IP>
 - Look at the second and third hop (and their reverse DNS lookups)!
 - What do you see?
Some Flood Ping Results

```
srl_test@kettwig.ude.nornet # ping -c 1000 -s 1400 -f 10.1.1.129 -I 10.30.42.122
PING 10.1.1.129 (10.1.1.129) from 10.30.42.122 : 1400(1428) bytes of data.
1000 packets transmitted, 1000 received, 0% packet loss, time 14591ms
rtt min/avg/max/mdev = 70.115/108.064/177.958/26.870 ms

srl_test@kettwig.ude.nornet # ping -c 1000 -s 1400 -f 10.2.1.129 -I 10.30.42.122
PING 10.2.1.129 (10.2.1.129) from 10.30.42.122 : 1400(1428) bytes of data.
1000 packets transmitted, 1000 received, 0% packet loss, time 14783ms
rtt min/avg/max/mdev = 31.009/76.446/136.024/27.666 ms

srl_test@kettwig.ude.nornet # ping -c 1000 -s 1400 -f 10.1.1.129 -I 10.31.42.122
PING 10.1.1.129 (10.1.1.129) from 10.31.42.122 : 1400(1428) bytes of data.
1000 packets transmitted, 999 received, 0% packet loss, time 14412ms
rtt min/avg/max/mdev = 121.153/175.432/252.685/28.585 ms

srl_test@kettwig.ude.nornet # ping -c 1000 -s 1400 -f 10.2.1.129 -I 10.31.42.122
PING 10.2.1.129 (10.2.1.129) from 10.31.42.122 : 1400(1428) bytes of data.
1000 packets transmitted, 999 received, 0% packet loss, time 14182ms
rtt min/avg/max/mdev = 78.643/124.496/207.773/26.729 ms
```

RTT differences among provider combinations; higher ADSL delay (Versatel)
Some Traceroute Results

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Results</th>
</tr>
</thead>
</table>
| traceroute 10.1.1.129 -s 10.30.42.122 | DFN → UNINETT | 1 essen.dfn.ude.nornet (10.30.42.1) 2.104 ms 2.849 ms 2.831 ms
2 dfn.ude.uninett.simula.nornet (192.168.178.10) 95.059 ms 95.024 ms 94.961 ms
3 srl-test.frogner.uninett.simula.nornet (10.1.1.129) 105.432 ms 105.281 ms 105.220 ms |
| traceroute 10.2.1.129 -s 10.30.42.122 | DFN → Kvantel | 1 essen.dfn.ude.nornet (10.30.42.1) 1.190 ms 1.739 ms 1.031 ms
2 dfn.ude.uninett.simula.nornet (192.168.178.10) 56.972 ms 56.722 ms 56.853 ms
3 srl-test.frogner.kvantel.simula.nornet (10.2.1.129) 100.773 ms 99.513 ms 99.337 ms |
| traceroute 10.1.1.129 -s 10.31.42.122 | Versatel → UNINETT | 1 essen.versatel.ude.nornet (10.31.42.1) 1.830 ms 2.633 ms 2.609 ms
2 versatel.ude.uninett.simula.nornet (192.168.133.222) 127.768 ms 127.954 ms 127.507 ms
3 srl-test.frogner.uninett.simula.nornet (10.1.1.129) 182.544 ms 182.564 ms 182.269 ms |
| traceroute 10.2.1.129 -s 10.31.42.122 | Versatel → Kvantel | 1 essen.versatel.ude.nornet (10.31.42.1) 1.178 ms 1.805 ms 1.769 ms
2 versatel.ude.uninett.simula.nornet (192.168.133.222) 88.834 ms 91.932 ms 96.620 ms
3 srl-test.frogner.kvantel.simula.nornet (10.2.1.129) 79.603 ms 75.599 ms 69.910 ms |

Hop 2: Router's ICMP TTL Exceeded is sent back via Simula's primary ISP!
What else to do?

- Try the same with IPv6!
 - ping6 [-f] [-s <size>] [-c <count>] <dest IP> -I <src IP>
 - traceroute6 <dest IP> -s <src IP>

- Try NetPerfMeter!
 - Supports TCP including MPTCP, SCTP, UDP, DCCP
 - Server side: netperfmeter <port>
 - Client side: netperfmeter <server>:<port> <flow details> ...
 (see manpage for details!)

- Install custom software
 - But note: do not assume the slivers to be permanent storages
 - Write scripts to automatise installation
 - In case of problems, nodes may just be wiped and reinstalled

And, of course, try your own experiments in NorNet!
Overview:
Conclusion

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
Conclusion and Future Work

- NorNet Core is ready for your ideas!
 - Think about your experiments
 - Let them run in NorNet Core

- How to get permanent access?
 - Talk to us!
 - Provide some information on your project
 Let us discuss the details about running your experiment in NorNet Core!

In case of questions, ask us!
“NorNet wants to be a building block of the railroad to heaven”...

... and not be another unused testbed that paves the road to hell!
Overview:
Literature

- Preparations
- Getting an Overview of the Testbed
- Using a Slice
- A Practical Example
- Conclusion
- Literature
Literature

- Dreibholz, T.: “NorNet – Building an Inter-Continental Internet Testbed based on Open Source Software” (PDF, 9587 KiB), Proceedings of the LinuxCon Europe, Berlin/Germany, October 5, 2016.

Any Questions?

Visit https://www.nntb.no for further information!