Puffin User Manual

March 1, 2006

Johan Hoffman and Anders Logg

www.fenics.org
Visit http://www.fenics.org/ for the latest version of this manual. Send comments and suggestions to puffin-dev@fenics.org.
Contents

1 Introduction ... 5
2 Mesh format ... 7
3 Specifying the variational formulation 9
4 The function `AssembleMatrix()` 13
5 The function `AssembleVector()` 15
6 Example programs ... 17
 6.1 The program `PoissonSolver` 17
 6.2 The program `ConvDiffStationarySolver` 17
 6.3 The program `ConvDiffTimeDepSolver` 17
Chapter 1

Introduction

Puffin is a simple and minimal implementation of FEniCS for Octave (MATLAB). It is based around the two functions AssembleMatrix() and AssembleVector(), which are used to assemble a linear system

\[AU = b, \]

representing a variational formulation of a differential equation,

\[a(u, v; w) = l(v; w) \quad \forall v \in V, \]

where \(a(u, v; w) \) is a bilinear form in \(u \) (the trial function) and \(v \) (the test function), and \(l(v; w) \) is a linear form in \(v \). The bilinear form \(a \) and the linear form \(l \) are allowed to depend on a vector \(w \) (the coefficients), and are referred to as the left-hand side and the right-hand side of the variational formulation.
Chapter 2

Mesh format

The mesh is assumed to be given by the three matrices \texttt{points}, \texttt{edges}, and \texttt{triangles}, representing the \textit{points}, \textit{edges}, and \textit{triangles} of an unstructured triangular mesh in the plane.

\texttt{FIXME:} Add detailed description of the format.
Chapter 3

Specifying the variational formulation

A variational formulation is given as a function in the following way:

function integral = MyForm(u, v, w, du, dv, dw, dx, ds, x, d, t, eq)

if eq == 1
 integral = ... * dx + ... * ds;
else
 integral = ... * dx + ... * ds;
end

The output argument `integral` should be the integral of the left-hand or right-hand side (depending on the value of `eq`) of the variational formulation over a triangle (with area `dx`) or an edge (with length `ds`).

The input arguments are given by

- `u`: the value of the trial function `u`,
- `v`: the value of the test function `v`,

- \(w \): a vector of coefficient values (optional),
- \(du \): the gradient \(\nabla u \) of the trial function \(u \),
- \(dv \): the gradient \(\nabla v \) of the test function \(v \),
- \(dw \): a matrix of coefficient gradients (optional),
- \(dx \): the area of the current triangle (zero if we are on an edge),
- \(ds \): the length of the current edge (zero if we are on a triangle),
- \(x \): the current quadrature point,
- \(d \): the current domain number or edge number,
- \(t \): the value of time,
- \(eq \): specifies left-hand side (1) or right-hand side (2) of the variational formulation.

As an example, consider the specification of the variational formulation for Poisson’s equation. The variational formulation in mathematical notation is given by

\[
\int_\Omega \nabla u \cdot \nabla v \, dx + \int_\Gamma \gamma uv \, ds = \int_\Omega fv \, dx + \int_\Gamma (\gamma g_D - g_N)v \, ds \quad \forall v. \quad (3.1)
\]

For a certain choice of \(a, f, \gamma, g_D, \) and \(g_N \), this can be specified by a function \(\text{Poisson()} \) as follows.

```matlab
function integral = Poisson(u, v, w, du, dv, dw, dx, ds, x, d, t, eq)
if eq == 1
    integral = du'*dv*dx + g(x,d,t)*u*v*ds;
else
    integral = f(x,d,t)*v*dx + (g(x,d,t)*gd(x,d,t) - gn(x,d,t))*v*ds;
end
%--- Conductivity (penalty factor) ---
```
function y = g(x, d, t)
y = 1e7;

%%%--- Dirichlet boundary condition ----
function y = gd(x, d, t)
y = 0;

%%%--- Neumann boundary condition ---
function y = gn(x, d, t)
y = 0;

%%%--- Right-hand side, source term ---
function y = f(x, d, t)
y = 5*pi^2*sin(pi*x(1))*sin(2*pi*x(2));
Chapter 4

The function \texttt{AssembleMatrix()}

The syntax of the function \texttt{AssembleMatrix()} is

\begin{verbatim}
A = AssembleMatrix(points, edges, triangles, pde, W, time),
\end{verbatim}

where the output argument is \(A\), the matrix to be assembled, and the input arguments are given by

- **points**: the matrix containing the node coordinates of the mesh,
- **edges**: the matrix containing the edges of the mesh,
- **triangles**: the matrix containing the triangles of the mesh,
- **pde**: the name of the function specifying the variational formulation,
- **\(W\)**: a matrix where each column contains the nodal values of additional functions (coefficients) appearing in the variational formulation as the functions \(w(1), w(2)\) and so on (leave empty ([]) if not needed),
- **time**: the value of time (the variable \(t\) in the variational formulation).
Chapter 5

The function \texttt{AssembleVector()}

The syntax of the function \texttt{AssembleVector()} is

\[
b = \texttt{AssembleVector(points, edges, triangles, pde, W, time)},
\]

where the output argument is \(b\), the vector to be assembled, and the input arguments are given by

- \texttt{points}: the matrix containing the node coordinates of the mesh,
- \texttt{edges}: the matrix containing the edges of the mesh,
- \texttt{triangles}: the matrix containing the triangles of the mesh,
- \texttt{pde}: the name of the function specifying the variational formulation,
- \texttt{W}: a matrix where each column contains the nodal values of additional functions (coefficients) appearing in the variational formulation as the functions \(w(1), w(2)\) and so on (leave empty ([]) if not needed),
- \texttt{time}: the value of time (the variable \(t\) in the variational formulation).
Chapter 6

Example programs

6.1 The program PoissonSolver

The program PoissonSolver solves Poisson’s equation on the unit square, using the variational formulation specified by the function Poisson().

6.2 The program ConvDiffStationarySolver

The program ConvDiffStationarySolver solves the stationary convection-diffusion equation around a cylinder, using the variational formulation specified by the function ConvDiffStationary().

6.3 The program ConvDiffTimeDepSolver

The program ConvDiffTimeDepSolver solves the time-dependent convection-diffusion equation on the unit square, using the variational formulation specified by the function ConvDiffTimeDep().