P4-Based In-Band Telemetry for OSM-Orchestrated 4G/5G Testbeds

Thomas Dreibholz, dreibh@simula.no
Andrés Felipe Ocampo, andres@simula.no
Mah-Rukh Fida, mahrukhfida@simula.no

OSM #12 Ecosystem Day
December 1, 2021
Table of Contents

- Motivation
- Our Testbed at SimulaMet
- Orchestration with OSM
- P4 and Telemetry
- Live Demo
Motivation

- 4G/5G networks need monitoring: Detect problems, evaluate performance, etc.
- Basic performance: metrics in OSM, via Juju and NFVI. Useful, but not very fine-granular.
- In-Band Telemetry:
 - Fine-granular monitoring at packet level.
 - Possibility to add custom information into packets (additional headers, etc.) and process them elsewhere.
- Our approach:
 - Usage of Programming Protocol-independent Packet Processors (P4).
 - Custom P4 software switches as VDUs in our testbed.
OpenAirInterface (OAI)

- OpenAirInterface (OAI):
 - Open Source software for EPC and eNodeB (i.e. packet core and base stations)
 - Details: https://www.openairinterface.org
 - 4G LTE available, 5G under development
 - Ongoing work, with many different Git branches

- Idea:
 - Manage OAI setups in OSM (at least, the EPC part)
 - Automatic setup and deployment
 - Easy to add additional features (e.g. Mobile Edge Computing components)
 - Open Source, of course! → https://github.com/simula/5gvinni-oai-ns
Basic Testbed Setup

OpenSource MANO

Juju containers
- MME
- HSS
- SPGW-C
- SPGW-U

The Internet

UEs eNodeBs S1-C S1-U SGi

MME S6a S11 HSS

SPGW-U SPGW-C EPC SXab

SimulaMet EPC NS

OpenStack Cluster
Telemetry Testbed

Radio Access Network

OpenSource MANO

Juju containers

OpenStack Cluster

Collector

Data Analysis & Storage

P4 SW

IP Network

MME

MME

HSS

HSS

SPGW-C

SPGW-C

SPGW-U

SPGW-U

S1a

S1a

S11

S11

S6a

S6a

SXab

SXab
P4 Program at Switch at S1U Interface

CLONE PACKET AT THE EGRESS, AND
STORE THE NEEDED METADATA INFORMATION, TO BE USED FOR THE CLONE PACKET, IN REGISTERS

```p4
if(standard_metadata.instance_type==0){
    reg_packet_length.write(0, standard_metadata.packet_length);
    reg_deq_qdepth.write(0, standard_metadata.deq_qdepth);
    reg_deq_timedelta.write(0, standard_metadata.deq_timedelta);
    clone(CloneType.E2E, 100);
}
```

DERIVE TELEMETRY DATA AT EGRESS

```p4
// RUN MIN COUNT SKETCH, TO COUNT PACKETS OF THE FLOW
compute_flowid();
compute_index();
increment_count();
compute_mincount(meta.count1, meta.count2, meta.count3);

// CHECK IF PACKET IS PART OF BURST
meta.marker=0;
is_heavy_hitter();
```
ADD INT TELEMETRY USING IP OPTION HEADER, TO THE CLONE PACKET

```cpp
// SET IP OPTIONS VALID
hdr.ipv4_option.setValid();
hdr.gre.setValid();

// Set UDP, GTP INVALID
hdr.gtp.setInvalid();
hdr udp_outer.setInvalid();

hdr.ipv4_option.copyFlag = 1;
hdr.ipv4_option.optClass = 0;
hdr.ipv4_option.option = 31; // 1 byte
hdr.ipv4_option.swid = 1; // 3 bits
hdr.ipv4_option.flow_packet_count = (bit<16>) meta.min_count; // 2 bytes
hdr.ipv4_option.packets_in_queue = (bit<10>) var_deq_qdepth;
hdr.ipv4_option.hitter = meta.marker; // 1 bit
hdr.ipv4_option.queue_timedelta = var_deq_timedelta;
hdr.ipv4_option.packet_length= (bit<18>) var_packet_length;
hdr.ipv4_option.optionLength = 12; // total number of byte
```
P4 Program at Switch at S1U Interface

1. Parse these headers.

2. Remove the UDP and GTP headers for cloned packet.

3. Add GRE tunnel, and IP option header for cloned packet.
Collector collects the data for further analysis

Ethernet

dst = fa:16:3e:47:c4:89
src = fa:16:3e:a8:17:95
type = IPv4

IP

version = 4
ihl = 5
tos = 0x0
len = 1406
id = 19522
flags = DF
frag = 0
ttl = 30
proto = gre
chksum = 0xf489
src = 10.208.0.214
dst = 10.208.0.16

GRE

checksum_present= 0
routing_present= 0
key_present= 0
sequence_present= 0
strict_route_source= 0
recursion_control= 0
flags = 0
version = 0
proto = IPv4

TELEMETRY

<table>
<thead>
<tr>
<th>option</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy_flag = 1</td>
</tr>
<tr>
<td>optclass = control</td>
</tr>
<tr>
<td>option = 31</td>
</tr>
<tr>
<td>length = 12</td>
</tr>
<tr>
<td>swid = 1</td>
</tr>
<tr>
<td>flow_packet_count = 6762</td>
</tr>
<tr>
<td>packets_in_queue = 0</td>
</tr>
<tr>
<td>queue_timedelta = 49</td>
</tr>
<tr>
<td>hitter = 0</td>
</tr>
<tr>
<td>packet_length = 1420</td>
</tr>
</tbody>
</table>
Any Questions?

Thomas Dreibholz
dreibh@simula.no, https://www.simula.no/people/dreibh

Andrés Felipe Ocampo
andres@simula.no, https://www.simula.no/people/andres

Mah-Rukh Fida
mahrukhfida@simula.no, https://www.simula.no/people/mahrukhfida

This project has received funding from the EU’s Horizon 2020 research and innovation programme under grant agreement No 815279.