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a b s t r a c t

This paper presents a methodology and tool to support test selection from regression test suites based on
change analysis in object-oriented designs. We assume that designs are represented using the Unified
Modeling Language (UML) 2.0 and we propose a formal mapping between design changes and a classifi-
cation of regression test cases into three categories: Reusable, Retestable, and Obsolete. We provide evi-
dence of the feasibility of the methodology and its usefulness by using our prototype tool on an industrial
case study and two student projects.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of regression testing is to test a new version of a
system so as to verify that existing functionalities have not been af-
fected by new system features [12,19]. Regression test selection is
the activity that consists in choosing, from an existing test set, test
cases that can and need to be rerun to ensure existing, unmodified
functionalities are still working correctly. Reducing the number of
regression test cases to execute is an obvious way of reducing the
cost associated with regression testing, which is usually substan-
tial [19].

The main objective of selecting test cases that need to be rerun
is to identify regression test cases that exercise modified parts of
the system. This is referred to as safe regression testing [27] as, in
the ideal scenario, it identifies all test cases in the original test
set that can reveal one or more faults in the modified program.
In order to achieve such an objective, we need to classify test cases
in an adequate manner. Adapting definitions in [18], we aim to
automatically classify test cases as follows:

� Obsolete: A test case that cannot be executed on the new version
of the system as it is ‘invalid’ in that context. Classifying a test
case as obsolete may lead to either modifying the test case
and corresponding test driver or removing the test case from
the regression test suite altogether.

� Retestable: A test case is still valid but needs to be rerun for the
regression testing to be safe.

� Reusable: A test case that is still valid but does not need to be
rerun to ensure regression testing is safe.

Regression test selection can be based on source code control
flow and data flow analysis. In this case, based on information
about the code of the two versions of the program, one selects test
cases that execute new or modified statements (in the new version
of the program) to be rerun, or formerly executed statements that
have been deleted from the original version of the program [28].
This selection is based on an analysis of the changes at the source
code level to determine their impacts on test cases. A drawback is
that it requires that the changes be already implemented but it can
be very precise in terms of selecting a minimum regression test set
as complete change information is available. (Precision varies
among code-based regression test selection strategies [27].) An
alternative, and complementary approach, is to use architectural/
design information available in design models [31]. In this case, se-
lected test cases execute new or modified model elements (e.g.,
class operations in the case of a UML model), or model elements
formerly executed but deleted from the original version. The im-
pact of possible changes is first assessed on the design of the last
version of the system, by comparing what would be the new design
with the existing design. The change impact magnitude is then as-
sessed and a change management group decides whether to imple-
ment it in the next version of the source code. Assuming there is
traceability between the design and regression test cases, we can,
at the end of the design impact analysis, automatically determine
what regression test cases will need to be rerun and what test
cases should be removed from the regression test suite as they
are no longer valid. Therefore, one main advantage of a design-
based approach is the possibility of performing early regression
test planning and effort estimation.

Another motivation for working at the architecture/design level
is in part motivated by efficiency as discussed in [12,19]. Leung and
White note that the cost of selecting regression test cases to rerun
must be lower than the cost of running the remaining test cases for
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test selection to make sense. In [12], it is suggested that working
closer to the architectural level may be more efficient than at the
source code level. To summarize, the motivations for investigating
test selection techniques at the architectural or design level are
fourfold, the last two points being related to efficiency:

� We can estimate the extent of the effort required for regression
testing earlier on, at the end of the design of the new system ver-
sion. Estimating regression test effort is an important part of
impact analysis and one of the decision criteria to include a
change in an upcoming version (the modification-request prob-
lem [12]).

� Regression test tools can be largely programming language inde-
pendent and they can be based on a standard, widely used
design notation such as the UML.

� Traceability between code and test cases requires to store and
update dependencies between test cases and code statements
or other representations of the code, e.g., control flow graphs.
Managing traceability at the design level may be more practical
than doing it at the code level as it enables the specification of
dependencies between test cases and the system at a higher
level of abstraction.

� No complex static and dynamic code analysis is required (e.g.,
data flow, slices). The latter analysis being usually necessary
for identifying possible dynamic bindings between methods at
run-time [29]. Using UML designs enables the easy retrieval of
relevant static and dynamic information (e.g., class interactions
at run-time from sequence diagrams) since they provide infor-
mation at a higher level of abstraction than the source code.

There are, of course, potential drawbacks too. For example,
using designs for impact analysis and test selection requires the
designs to be complete, internally consistent, and up-to-date.
Though CASE tools are getting better at providing round-trip engi-
neering capabilities, this is not always easy in practice. Another is-
sue is that some (potentially faulty) changes to the source code
may not be detectable from UML documents, e.g., a change in a
method’s body (a more efficient algorithm is implemented) may
not be visible from class, sequence or statechart diagrams, suggest-
ing that model-based and code-based approaches are complemen-
tary. These issues will be discussed in further details in the
following sections.

In this paper, we focus on automating regression test selection
based on architecture and design information represented with the
Unified Modeling Language (UML) and traceability information
linking the design to test cases. Our focus on the UML notation is
a practical choice as it has become the industry de-facto standard.
The original test set from which to select can contain both func-
tional and non-functional system test cases. From a UML stand-
point, functional system test cases test complete use case
scenarios.

The rest of the paper is structured as follows. Since UML is only
a notation, we first precisely describe the assumptions we make
regarding the way it is used (Section 2). The following section de-
scribes the detected changes from UML class and use case/se-
quence diagrams as well as their impact on the classification of
test cases (Section 3). To do so, we provide both intuitive defini-
tions and a formal mapping using set theory. In Section 4, we ana-
lyze our model-based regression test selection strategy in the light
of the framework proposed in [27], though this framework has
been originally defined for white-box regression test selection
strategies. Section 5 briefly introduces the functionality of the
Regression Test Selection Tool (RTSTool) we built based on the
principles introduced in Section 3. Sections 6 and 7 report the de-
tails of case studies and further discuss related works, respectively.
Conclusions and future directions are then drawn in Section 8.

2. Assumptions on the use of the UML notation

This section focuses on the testability of UML diagrams, that is
the extent to which they can be used to support test automation.
As UML is only a notation, we need to make a number of assump-
tions about the way UML diagrams are used [6] to automate their
analysis and facilitate traceability between test cases and the UML
models. Though what we write in this section should not be sur-
prising to the experienced UML practitioner, it needs to be clarified
so as to automate our regression test selection methodology.

2.1. Consistency assumption and design by contract

First of all, we assume the different UML diagrams we rely on,
i.e., use case, sequence and class diagrams, are consistent with each
other. Otherwise, one cannot guarantee the validity of any UML-
based analysis. For instance, if an operation has been deleted from
a class in the class diagram, we assume the sequence diagrams in
which the operation appears in the label of a message have been
updated. Consistency checking can be easily implemented [4]
and is a separate issue from the focus of the current paper. Note
that modern modeling environments, such as Rational Software
Architect [14], already support such consistency analysis.

Following the well-known Fusion method [9] and the Design By
Contracts principles [20,21], we assume that class operations are
described by providing their precondition and postcondition. In
the context of UML, such contracts are typically described using
the Object Constraint Language (OCL [32]). We also assume that
class invariants are provided in OCL.

2.2. From use cases to sequence diagrams

Another issue is related to the combined use of use cases and
sequence diagrams. We assume that with each use case we associ-
ate a unique sequence diagram specifying the possible object inter-
actions that realize all possible use case scenarios. In practice,
scenarios can be specified across several sequence diagrams to im-
prove their readability but we assume there is only one, complete
sequence diagram.1 We also assume, following best practices, that
sequence diagrams be named [16], and that they be named after
the use cases they realize. As a notational convention, sequence dia-
gram A refers to the sequence diagram for use case A.

Use cases relate to each other in the use case diagram by means
of include, extend and generalization relationships [2]. For in-
stance, in an Automated Teller Machine (ATM) system, the
DoTransaction use case includes use case InsertCard. In other
words, common functionalities across use cases are factorized out
to reduce complexity in the use case diagram and use case textual
descriptions. This also results in simpler sequence diagrams that
focus only on the event flows of the corresponding use cases rather
than on the event flows of included or extension use cases. Defini-
tions for include and extend use case relationships (with extension
points [24]) allow a clear identification of when in the correspond-
ing flow of events a use case invokes another use case.2 Moreover,
UML 2.0 provides a mechanism, namely Interaction Uses, to translate
use case relationships into sequence diagrams [24]. This mechanism
applies to both include and extends use case relationships and al-
lows: (1) Complete scenarios possibly exercising several use cases

1 There is no technical or theoretical difficulty in merging sequence diagrams
modeling different scenarios of a same use case into one complete sequence diagram.

2 An include relationship between use cases means that the base use case explicitly
invokes another use case at a location specified in the base. An extend relationship
between use cases means that the base use case implicitly invokes another use case at
a location specified indirectly (i.e., conditions, extension points) by the extending use
case [2].
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to be derived when building test cases; (2) traceability between test
cases and those scenarios when automatically classifying test cases.

The example in Fig. 1 shows a sequence diagram (a) that refers
to another sequence diagram (b) using an interaction use (identi-
fied by the ref keyword). Note that the name of the referred se-
quence diagram and its formal parameters (Fig. 1b) match the
name of the interaction use and its arguments in the referring se-
quence diagram (in the contents area of the ref box).

Generalization among use cases is similar to generalization
among classes. The child use case inherits the behavior and mean-
ing of the parent use case, the child may add to or override the
behavior of its parent, and the child may be substituted any place
the parent appears [2]. Again, we need to determine the impact of
this relationship on the corresponding sequence diagrams. Due to
the substitutability principle, both the parent and child use cases
(i.e., their sequence diagrams) must have the same sequence of
triggered Fragments, such that the target classes involved in the
child’s triggered Fragments are identical or child classes of the
ones in the parent’s triggered Fragments. Which one of the use
cases is actually executed at run-time is usually determined by
the inputs of an actor and the state of the system. A generalization
between use cases then maps to a generalization in the class
diagram.

As an example, consider an ATM system where a customer (ac-
tor) can perform transactions such as a withdrawal or deposit. The
actor Customer is associated with use case DoTransaction,
which includes use case PerformTrans, which is itself a parent
use case for PerformWithdrawal and PerformDeposit. Fig. 2
provides partial sequence diagrams for use cases DoTransaction
(a), PerformWithdrawal (b) and PerformDeposit (c). The se-
quence of triggered Fragments of PerformTrans (sequence dia-
gram not shown) contains only message doTrans(). This
operation is defined in abstract class Transaction (class diagram
not shown) which is specialized by classes Withdrawal and De-

posit. As shown in Fig. 2a, the only class that appears in the
including use case is the parent class Transaction (the one that
appears in included use case PerformTrans), and the actual target
class of the message in the possibly included use cases (through
generalization) is specific to the child use case, e.g., Withdrawal,
Deposit in (b) and (c).

2.3. Applications

These above principles are applied in two different contexts to
improve testability: deriving functional system test cases, and
mapping test cases to complete scenarios (i.e., scenarios that may
traverse several sequence diagrams).

The strategy we used for deriving functional system test cases
in our case studies (see Section 6) has been described in [3]. This
strategy is based on the derivation of use case dependency se-
quences that are transformed into test cases from the scenarios de-

scribed in the corresponding sequence diagrams. Therefore, when
extending a scenario in a base use case with a scenario from an in-
cluded use case, it is then important to identify where in the for-
mer scenario (i.e., in the sequence of messages) the extension
occurs.

When classifying test cases (Section 3.6), it is important to (i)
first identify which sequence diagrams are triggered by a particular
test case, and then (ii) verify that those test cases are valid: they
execute feasible scenarios as described in the identified sequence
diagrams.

(i) We assume classes are classified according to the types of
functionality they provide. In [6], as in other OO development
methods, one category is Boundary, also sometimes referred to
as Interface. Those classes are managing the interaction with
actors (e.g., GUI, device) and forward requests to other classes.
Test drivers emulate the behavior of actors and execute system
test cases by interacting solely with boundary classes: the only
operations test drivers implementing test cases are directly
invoking belong to boundary classes. A test case (using the mes-
sages to boundary classes it contains) can thus be uniquely
mapped to a sequence diagram (using its messages to boundary
classes).
(ii) To check whether a test case is valid, it is important to iden-
tify where in base sequence diagrams other sequence diagrams
are invoked. This can be automated using the use case diagram
and sequence diagrams, provided that the testability principles
described in previous sections are followed. A tool can easily
build complete sequence diagrams for the use cases directly
triggered by actors, thus removing include and extend relation-
ships. Note that in the case of an include or extend relationship
of a parent use case, the tool has to record a possible set of
invoked sequence diagrams (i.e., corresponding to the child
use cases). Once we have complete sequence diagrams, we
can then determine whether a test case is a valid sequence of
actions for the sequence diagram it is mapped to in step (i).

3. Determining the impact of design changes

We present in this section the design changes that are being
considered and detected to drive regression test selection (Sections
3.3 and 3.4). We then identify one critical issue involved in auto-
mating this process (Section 3.5) and precisely define the rules
we follow to classify regression test cases (Section 3.6). The classi-
fication of changes and their use during test case selection are de-
scribed informally as well as formally using set theory and first
order logic. We limit the formalism employed (Section 3.2) to what
we consider necessary to keep our definitions as simple and intu-
itive as possible while providing unambiguous definitions for the
objective of this paper: regression test classification. To facilitate

Fig. 1. Example of interaction use (excerpts from [1]).
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this, we first present a simplified version of the UML 2.0 sequence
diagram metamodel (Section 3.1).

As mentioned in Section 1, we consider changes on class dia-
grams, sequence diagrams and use case diagrams, as those are
the most commonly used diagrams in practice. Future work will
address other diagram types. In the text below, we assume the dia-
grams to be consistent.

3.1. Reminder on the UML 2.0 notation (Metamodel)

Fig. 3a is a (simplified) metamodel for the UML 2.0 sequence
diagram notation [24]. As mentioned earlier, we limit the formal-
ism employed to what we consider necessary for our notation
and definitions (following subsections). We simplified the meta-
model in a number of ways: (1) employing more straightforward
names for concepts (e.g., SequenceDiagram and Fragment in
Fig. 3a correspond to Interaction and InteractionFragment

in UML 2.0); (2) simplifying associations (e.g., association between
Message and Fragment does not exist in UML 2.0 but can be de-
rived from other associations and classes), (3) limiting the informa-
tion to classes and associations that are necessary for the rest of
the paper. However, the information included in our (simplified)
metamodel can always be retrieved from the UML 2.0 metamodel.

In a UML 2.0 sequence diagram, as specified by our metamodel,
a SequenceDiagram is associated to a UseCase and is composed
of a sequence of Fragments (ordered composition between

SequenceDiagram and Fragment), which can be either
Messages, InteractionUses (i.e., references to other sequence
diagrams), or CombinedFragments.3 For instance, in Fig. 3b, the
sequence diagram triggers sequence a(), d() of Messages. A Frag-

ment can trigger other Fragments
4 (self composition): in Fig. 3b,

a() triggers a sequence composed of one alternative combined frag-
ment. A CombinedFragment has a kind (e.g., alt stands for alter-
native) and is composed of a sequence of InteractionOperands
(redefined association), which trigger Fragments (inherited associ-
ation from Fragment) and can have a guard condition (association
to InteractionConstraint).

3.2. Notation for the detection of changes

Let us first introduce some notation to formalize our defini-
tions: U, S, and SB denote the sets of use cases, sequences of Frag-

Fig. 2. Sequence diagrams for use cases with generalization relationship.

Fig. 3. Simplified UML 2.0 metamodel (a) and example sequence diagram (b).

3 The generalization relations and self association on class Fragment are only used
to simplify our definitions in Sections 3.3, 3.4 and 3.6. Note that an Interactio-

nOperand can only be triggered by CombinedFragments and a CombinedFragment
only triggers InteractionOperands (redefined composition).

4 Self association triggers is derived in the context of InteractionUse from the
association between SequenceDiagram and Fragment: the Fragments triggered by
an InteractionUse (association triggers inherited by InteractionUse) are
those triggered by the SequenceDiagram the InteractionUse refers to (associ-
ation refersTo). (In the context of class InteractionUse, the following holds:
self.triggers =self.refersTo.triggers.)

L.C. Briand et al. / Information and Software Technology 51 (2009) 16–30 19
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ment executions in all use cases (i.e., sequences in their corre-
sponding sequence diagrams), and sequences of Fragments that
include at least one message sent to boundary objects or classes.
The sets of messages and messages sent to boundary objects are
denoted as M and MB, respectively (MB �M). Any message in M
can be represented by a 4-tuple: A message in M has a source clas-
sifier name (a classifier is usually an object, but can also be a class,
or an actor when the message involves one), a target classifier
name, a triggered action name, as well as a triggering action name
corresponding to the action that triggers the message.5 For in-
stance, in Fig. 3b, message labeled b() has a source classifier name
(i.e., instance of class X), a target classifier name (instance of class
Y), a triggered action (b()), and a triggering action (a()). An action
can be a signal (i.e., the class name of the signal object being asyn-
chronously sent), a call to an operation, or special create and destroy
actions [2]. (Note that we are not interested in reply messages.) Fur-
thermore, a message can be specified by a return value and
arguments.

Since we assume that UML diagrams are consistent, these 4-tu-
ples uniquely identify messages in M. In other words, a 4-tuple
that appears in different sequence diagrams (or in different se-
quences of the same sequence diagram) corresponds to only one
message in M. A sequence diagram may be seen as a set of possible
sequences of fragments. For a sequence s 2 S (or s 2 SB) we denote
the ith element of sequence s as s(i).

As specified in our metamodel (Fig. 3a), Fragments can be trig-
gered in sequence ({ordered}) by another Fragment. We denote
by TFF the triggered relation on the set F of Fragments. TFF(f)
therefore refers to the sequence of Fragments triggered by
Fragment f and TFF(f)(i) refers to the ith element in sequence TFF(f).

In order to distinguish the above sets in the two versions of the
system, we add the version number (i.e., 1 or 2) as a superscript6:
set M1 (resp. S2) is the set of messages (resp. sequences) in the first/
original (resp. second/modified) version of the system. A similar
notation, adding character c as a superscript, is used to denote sets
of changed elements: Mc denotes the set of changed messages from
version 1 to version 2, i.e., elements that appear in both M1 and M2

but are changed (see Definition 1 below). Note that we do not need
to refer to added or deleted messages since such modifications result
in changed sequences (see Definition 5 below) as the result of our
consistency assumption (Section 2.1). These sets have relations that
are of interest to us, such as messages that appear in sequences. We
thus define the mathematical relations RMS and RMBS to identify the
messages and messages to boundary classes involved in sequences,
respectively. Note that these relations’ subscript indicates their do-
main, e.g., RMS 2M � S, thus making it easy to interpret a relation
in a formula (this notation will be used throughout the article for
other relations). This formalism is not only used to provide precise
definitions but also to define constraint rules between the sets that
are used as a basis for defining the underlying algorithms of our test
selection tool (see Section 5).

Some notation is also required for comparison of class diagrams.
A, O, C, and L denote the sets of attributes, operations (signatures),
classes and relationships (between classes) in a class diagram,
respectively. Note that attributes and operations are identified by
their name and signature, respectively. Attributes (operations)
with the same name (signature) but in different classes are distin-

guished using mathematical relations: RAC, ROC, and RCL identify the
attributes of classes, the operations of classes, and the relation-
ships between classes, respectively.

Last, RMOC identifies the operations (O) of classes (C) involved in
messages (if the action is a call, create or destroy). Although only
arguments (no type information) are shown in messages [30], a
message (i.e., metaclass Message in the UML 2.0 metamodel)
has a signature association to a NamedElement which ‘‘must
either refer to an Operation [in which case the message is a call]
or a Signal [in which case the message is a signal]” [24]. It is
therefore possible to uniquely identify the operation that is used
in a message, except when the operation is overwritten. In this
case, for a given message m with target class c, there may exist
more than one operation o in class c such that (m, o, c) 2 RMOC.
In other words, action names in 4-tuples may correspond to lists
of operations.

3.3. Changes between two versions of the same sequence diagram

Assuming that use case names are unique within one use case
diagram, two versions of a given use case diagram are compared
to detect the sets of added and deleted use cases. Using a similar
notation as for changed elements, we denote these sets as Ua and
Ud, respectively. Since each use case is described by one sequence
diagram, two subsequent versions of sequence diagrams are com-
pared to detect the set of changed messages and therefore the set
of changed use cases.

3.3.1. Definition 1 – Changed message (Mc)
A changed message is a message that exists in both M1 and M2

(with identical 4-tuple) but with a different return value, argu-
ments, or a changed action – i.e., either a changed operation (see
Definitions 7–11) or a changed signal class (Definition 14) – as de-
tected from class diagrams (Section 3.4).

Definition 1.

ð8m1 2M1Þð8m2 2M2Þ

m1 and m2 have the same 4-tuple but they have a different return
value, arguments, or the message action (operation or signal) is
changed)m1 2Mc

3.3.2. Definition 2 – Changed combined fragment (CFc)
CF denotes the set of combined fragments. Combined fragments

are uniquely identified by a 2-tuple: their triggering Fragment and
their position in the sequence of Fragments triggered by their
triggering Fragment. A changed combined fragment is a combined
fragment that exists in both CF1 and CF2 (with identical 2-tuple)
but with a different kind (e.g., alt, opt).

Definition 2.

ð8cf1 2 CF1Þð8cf2 2 CF2Þ

cf1 and cf2 have the same 2-tuple but a different kind) cf1 2 CFc

3.3.3. Definition 3 – Changed interaction operand (IOc)
IO denotes the set of interaction operands. Interaction operands

are uniquely identified by a 2-tuple: their triggering combined
fragment and their position in their triggering combined frag-
ment’s sequence of triggered interaction operands. A changed
interaction operand is an interaction operand that exists in both
IO1 and IO2 (with identical 2-tuple) but with a different guard.
Modifications in OCL expressions (i.e., the guards) can easily be de-
tected, as further discussed in Section 3.5, by parsing and compar-
ing them.

5 Messages in sequences triggered by sequence diagrams (association between
SequenceDiagram and Fragment) do not have a triggering action. This also includes
message sent by an actor. Similarly, messages sent to an actor do not have a triggering
action. For instance, message labeled d() in Fig. 3 has a source classifier name (i.e., an
actor), a target classifier name (i.e., class X), an action (i.e., d()), but no triggering
action.

6 This mechanism, adding the version as a superscript to identify a set, is also used
for other sets or relations in the rest of the document. Note that the superscript is
omitted when the version number is not relevant.
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Definition 3.

ð8io1 2 IO1Þð8io2 2 IO2Þ

io1 and io2 have the same 2-tuple but a different guard) io1 2 IOc

3.3.4. Definition 4 – Changed interaction use (IUc)
IU denotes the set of interaction uses. Interaction uses are un-

iquely identified by a 2-tuple: their triggering Fragment and their
position in their triggering Fragment’s sequence of triggered
Fragments. A changed interaction use is an interaction use that
exists in both IU1 and IU2 (with identical 2-tuple) but with a differ-
ent referred use case.

Definition 4.

ð8iu1 2 IU1Þð8iu2 2 IU2Þ

iu1 and iu2 have the same 2-tuple but a different referred use
case) iu1 2 IUc

3.3.5. Definition 5 – Changed fragment (Fc, Fc ¼Mc [ CFc [ IOc [ IUc)
Recall that Fragments (i.e., Message, CombinedFragment,

InteractionOperand, and InteractionUse) trigger sequences
of Fragments. When any of the Fragments triggered by a Frag-
ment is changed (Definitions 1–4 ) or the sequence triggered is
changed (e.g., addition or deletion of triggered Fragments) we
consider the triggering Fragment (either a Message, a Combined-
Fragment, an InteractionOperand, or an InteractionUse) to
be changed. For example, in the case of a message with an opera-
tion as action, the implementation of that operation may change if
the Fragments it triggers or their sequence change. When the ac-
tion of the message is a signal, the signal object may not change as
a result of changes in triggered fragments, but the processing of the
signal in the target object will (e.g., the run() method in Java). In
that case too, to be consistent, the message including the signal is
considered changed. Note that such a change may not result in any
change in the class diagram (e.g., the operations’ contracts may not
change).

Definition 5. ("f1 2 F1) ("f2 2 F2), f1 and f2 have the same tuple
(see Definitions 1–4)

TFFðf1Þ–TFFðf2Þ _ 9k 2 N; TFFðf1ÞðkÞ 2 Fc ) f1 2 Fc

3.3.6. Definition 6 – Deleted sequence of boundary messages (SBd)

A deleted sequence of messages to boundary objects is a se-
quence that appears in the first version of the sequence diagrams,
but not in the second version.

Definition 6.

ð8s 2 SBÞs 2 SB1 ^ s R SB2 ) s 2 SBd

3.4. Changes between two versions of the same class diagram

Two subsequent versions of a given class diagram, correspond-
ing to different versions of an evolving system, are compared to de-
tect the sets of changed attributes, operations, relationships, and
classes. Note that, we do not identify additions and deletions of
class diagram elements since, because of our consistency assump-
tion, these modifications result in changes to operations (or
changes to messages as seen in Section 3.3). For instance, addi-
tions/deletions of attributes, operations, or relationships require,
in order to maintain consistency, that OCL expressions involving
them in the first version of the system be changed, thus resulting
in changed operations (see definitions below). Note that there

are different ways a changed operation can be detected and this
is why Definitions 7–11 all concern changed operations.

3.4.1. Definition 7 – Changed operation ðRc
OCÞ

A changed operation has the same signature in the two class
diagram versions (operation name, parameter names, types and
direction), but with a different property or stereotype, or with dif-
ferent parameter default values.7 We do not consider changes of
visibility (public, private, protected) or scope (class, instance) be-
cause, since we assume diagrams are consistent, those changes
would have either no impact on the classification of test cases or re-
sult in changes in sequence diagrams that are already handled as de-
scribed in Section 3.1.

Definition 7. Some of the elements of Rc
OC are identified using the

following rule:

ð8c 2 CÞð8o1 2 R1
OCÞð8o2 2 R2

OCÞ

o1 and o2 have the same signature but have a different property, ste-
reotype or parameter default values7 ) o1 2 Rc

OC

3.4.2. Definition 8 – Changed operation ðRc
OCÞ because of changed

operation contracts
Assuming the design by contract approach is used to specify the

operations preconditions and postconditions in the Object Con-
straint Language (OCL), changes to operation contracts (new pre-
condition or postcondition) indicate a changed operation (the
analysis of OCL expressions, required here, is further discussed in
Section 3.5). For example, an operation may treat a wider set of sit-
uations (inputs), thus changing the precondition, though the post-
condition may remain identical. We provide below a definition for
postconditions though a very similar definition exists for
preconditions.

Definition 8. Given P the set of postconditions and RPOC the
relation that defines postconditions of operations in classes, some
of the elements of Rc

OC are identified using the following rule:

ð8ðo; cÞ 2 ROCÞð9p1 2 P1;p2 2 P2Þ
ðp1; o; cÞ 2 R1

POC ^ ðp2; o; cÞ 2 R2
POC ^ p1–p2 ) ðo; cÞ 2 Rc

OC

Special case: If the operation is a constructor, we handle it in a dif-
ferent manner. Changed initialization of attributes, as shown in the
constructor’s postcondition, amounts to changed attributes (i.e.,
changed initial values).

3.4.3. Definition 9 – Changed operation ðRc
OCÞ because of changed class

invariant
Assuming the design by contract approach is used to specify

class invariants in the OCL, changes to the class invariant indicate
changed operations. (This can be detected in a similar way to
changes in preconditions and postconditions.) A new invariant
may require that the operation be changed to preserve that new
invariant after execution.8

Definition 9. Given I the set of class invariants and RIC the relation
that defines invariants in classes, some of the elements of Rc

OC are
identified using the following rule:

ð8ðo; cÞ 2 ROCÞð9i1 2 I1; i2 2 I2Þði1; cÞ 2 R1
IC ^ ði2; cÞ 2 R2

IC ^ i1–i2

) ðo; cÞ 2 Rc
OC

7 Changes to other characteristics of an operation are also monitored: e.g., values to
attributes isQuery, association to raised exceptions [24].

8 This is a rough assumption since a changed invariant may not affect some
operations. Future work will look into refining this definition and precisely
identifying which operations are impacted or not by changes to invariants.
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3.4.4. Definition 10 – Changed operation ðRc
OCÞ due to a changed

attribute

If an operation accesses a changed attribute (Definition 12), as
shown in the operation’s contracts, the operation is considered
changed. A similar definition exists if the operation’s contract
makes use of changed query9 operations. Though no change may
be visible in the operation’s contracts or in the fragments the oper-
ation triggers (see the detection of changes in sequence diagrams in
Section 3.3), its implementation is likely to require some changes. (A
similar definition exists for changed attributes accessed in class
invariants but is omitted here.)

Definition 10. Given RACO the relation that identifies attributes
accessed by operations in classes (as shown in the operation’s
contracts), some elements of Rc

OC are identified using the following
rule (note that the operation and the accessed attribute may not be
in the same class):

ð8ðo; c1Þ 2 ROCÞð9ða; c2Þ 2 RACÞða; c2Þ 2 Rc
AC ^ ða; c1; oÞ 2 RACO

) ðo; c1Þ 2 Rc
OC

3.4.5. Definition 11 – Changed operation ðRc
OCÞ due to a changed

relationship

The operation contracts show which relationships are navigated
in the operation (through the OCL navigation expressions [32]). If
any of the navigated relationships in the operation’s contract has
changed (Definition 13(a)) in the new class diagram, then the oper-
ation is considered changed as its execution may be affected. (A
similar definition exists for changed relationships traversed in
class invariants but is omitted here.)

Definition 11. Let ROCL capture relationships that are navigated in
the contracts of operations in classes. Some elements of Rc

OC are
identified as follows:

ð8ðo; cÞ 2 ROCÞð9l 2 LÞðo; c; lÞ 2 ROCL ^ ðc; lÞ 2 Rc
CL ) ðo; cÞ 2 Rc

OC

3.4.6. Definition 12 – Changed attribute ðRc
ACÞ

A changed attribute (as identified by its name) exists in both
versions of a given class but with a different scope (class or in-
stance), type (i.e., datatype10), visibility (public, protected, private),
multiplicity, initial value (declaration initialization or constructor
changes), stereotype or property (e.g., property {frozen} indicates
that the attribute’s value may not change after an instance of the
class holding it is created). Note that we only consider changes in
datatypes since relationships between user-defined types (other
than datatypes) should be modeled with associations rather than
attributes (see the detection of changed associations below).

Definition 12. Rc
AC ¼ fða; cÞ 2 R1

AC \ R2
AC/ a in class c has a different

scope, type, visibility, multiplicity, initial value, stereotype or
property in versions 1 and 2}

3.4.7. Definition 13 – Changed relationship (Lc)
The process of identifying changed relationships depends on the

kind of the relationships. A changed association is an association
that exists in both class diagram versions but with a different
name, kind (plain association, aggregation, composition), multi-
plicities, navigability, role visibility, or qualifier. Note that we do
not consider changes in role names or stereotype for changed asso-

ciations as associated classes along with their roles names and the
association stereotype are used to uniquely identify associations. If
we are dealing with an association carrying an association class,
then any change in the association class results in a change in
the association. Generalization and realization relationships can
only be considered changed when they are described by a stereo-
type that changes. Given that dependencies are uniquely identified
and fully specified by their source and target classes and their ste-
reotype, it is impossible to observe changed dependencies since
any change to a dependency results in a deletion and an addition.

Definition 13(a). Given La, Lg and Lr the sets of associations,
generalizations and realizations, respectively (La [ Lg [ Lr # L),
we have:("l 2 La) (l has a different name, kind, multiplicities,
navigability, role visibility, or qualifier in versions 1 and
2)) l 2 Lc("l 2 Lg [ Lr) (l has a different stereotype in versions 1
and 2)) l 2 Lc

Definition 13(b). Given Cac the set of association classes (Cac # C),
Cc the set of changed classes (see Definition 14), and RCacL the asso-
ciations carrying association classes, we have:

ð8l 2 LÞð9c 2 CcÞðc; lÞ 2 RCacL ) l 2 Lc

3.4.8. Definition 14 – Changed class (Cc)

A changed class exists in both versions of the class diagram but
with a changed attribute, operation, invariant (OCL), relationship,
stereotype, property, multiplicity or template. This definition
encompasses signal classes (used for asynchronous messages in se-
quence diagrams [11]).

Definition 14. Given the previous definitions on attributes, oper-
ations and relationships, the set of changed classes (Cc) is formally
defined as follows:

("c 2 C) (c has a different stereotype, property, multiplicity or
template in versions 1 and 2)) c 2 Cc

ð8c 2 CÞð9a 2 A;o 2 O; l 2 L; i 2 IÞða; cÞ 2 Rc
AC _ ðo; cÞ 2 Rc

OC _ ððo; lÞ
2 RCL ^ l 2 LcÞ _ ði; cÞ 2 Rc

IC ) c 2 Cc

3.5. Analysis of OCL expressions

OCL expressions have been used in the previous sections to de-
tect changes in operations’ contracts or in guards. In both cases,
four kinds of changes are studied: the expression itself changes, a
changed attribute or query operation is used in the expression,
or a changed association is navigated in the expression; and we
investigate here the challenges in detecting such changes.

When an attribute y of a class is used in one of class X operations’
contracts, it appears under three possible forms: y, self.y,
expression.y where expression is an OCL expression possibly
involving navigations and operations on OCL collections. Note that,
in the first two forms, y is an attribute of X, whereas it is not neces-
sarily the case in the latter. Furthermore, the above discussion also
applies to associations in which X is involved and that are used (i.e.,
navigated) in X operations’ contracts. In this case, y denotes either
the role name to the target class involved in the association or its
name. Identifying the two first forms is straightforward, given a
string representation of the OCL constraint, whereas identifying
the third form is more complicated since it may require some type
analysis (i.e., determining the type of expression) when several
attributes bear the same name across different classes.

A straightforward string comparison of the two versions of an
OCL expression can be used to detect a change when the expres-
sion itself changes. However, this may produce false positives

9 A query operation returns a value but does not change the state of any object [32].
10 A datatype is a type whose values have no identity [2], and includes primitive

built-in types (e.g., Integer) as well as classes with stereotypes �enumeration� or
�datatype�.
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when the change is only a rewriting of the expression without any
semantic change. Indeed it is often possible to express a constraint
in different ways in OCL. False positives would result into detecting
changes that should have no impact on the classification of test
cases. A more complicated change detection technique, that would
not produce such false positives, would require some semantic
analysis to detect equivalent OCL expressions. An important ques-
tion is then whether it would be worth it from a practical
standpoint.

The current implementation of our tool (Section 5) does not
perform type or semantic analysis of OCL expressions. However,
none of our case studies required the above functionalities to be
implemented and were therefore not affected by the current tool
limitations.

3.6. Impact of changes on test cases

Using the traceability between test cases and sequence dia-
grams, the change analysis results obtained from comparing the
two versions of the class and use case diagrams/sequence diagrams
are used to automatically classify the regression test cases.

For a given set of test cases T, there exist relations between ele-
ments in T and elements in S (RTS) and SB (RTSB), as test cases exe-
cute sequences in sequence diagrams. The implementation and
handling of these relations in our tool is presented in Section
5.2.3. In our classification of test cases, to simplify the notation,
RTSB(t) represents the sequence of boundary messages triggered
by test case t. A test case can be classified in one of three catego-
ries: Obsolete, Retestable, Reusable. We provide a mapping be-
tween these categories and the change impacts described in
Sections 3.3 and 3.4.

3.6.1. Definition 15 – Obsolete test case (To)
A test case is obsolete if it consists of an invalid execution se-

quence of messages on boundary objects. This results from a
change in the possible sequences according to which messages in-
volved in the test case can be sent to boundary objects (including
the addition or deletion of a message to a boundary object in the
sequence diagram scenario that was mapped to the test case).

Definition 15. The set of obsolete test cases, To, can be defined as11

ð8t 2 TÞR1
TSBðtÞ 2 SBd ) t 2 To:

3.6.2. Definition 16 – Retestable test case (Trt)

A retestable test case is a test case which remains valid in the
new version of the design in terms of sequence of messages to
boundary objects. But one or more of these messages may have
changed (e.g., operation postcondition), or the set of valid se-
quences of messages triggered by boundary class messages may
have changed (this results in changed messages according to Def-
inition 5).

Definition 16. The set of retestable test cases, Trt, can be defined as

ð8t 2 TÞð9ðt; sÞ 2 RTSÞð9ðm;sÞ 2 RMSÞR1
TSBðtÞ R SBd ^m 2Mc) t 2 Trt

3.6.3. Definition 17 – Reusable test case (Tre)

A reusable test case consists of a sequence of messages to
boundary objects that has remained valid in the new version of
the design. The sequences of messages triggered by the boundary
messages have not changed either. In other words, none of the

messages involved in the test case (sent to boundary or other clas-
ses) have been changed.

Definition 17. The set of reusable test cases, Tre, can be defined by

ð8t2TÞð8ðt;sÞ 2RTSÞð8ðm;sÞ 2RMSÞR1
TSBðtÞ R SBd^m R Mc) t2Tre

We can see from the above definitions that the three test case cat-
egories are mutually exclusive so that any given test case is either
obsolete, retestable or reusable.

4. Analyzing our regression test selection strategy

Rothermel and Harrold [27] proposed an evaluation frame-
work (referred to as the RH framework) for regression test selec-
tion techniques. The framework was originally designed for code-
based techniques but most of the principles can be applied here.
Four evaluation criteria are going to be discussed in this section:
safety, precision, efficiency, generality. In particular, we address
the impact of using UML designs instead of code on those
criteria.

4.1. Safety

The RH framework shows that, when two assumptions hold,
demonstrating that fault-revealing tests are selected is equivalent
to demonstrating that all modification-revealing tests (i.e., that
can cause the output of the two program versions to differ) are se-
lected. The first assumption, that test cases halt and produce cor-
rect results on the original program version, was easy to verify in
our case studies. The second assumption, that obsolete test cases
are identified and removed, was also checked for all our case stud-
ies but was more complex. Though many of the obsolete test cases
are automatically identified (Definition 15), the detection of some
of them may require additional checking that is not yet imple-
mented in our tool. For example, we would need to evaluate
whether test case data (e.g., input values to operation calls) satisfy
changed operations’ preconditions.

Furthermore, under the controlled regression assumption (i.e.,
all the factors that influence the system outputs are held constant,
except for the program modifications [27]), the non-obsolete mod-
ification-traversing tests are a superset of the modification-reveal-
ing tests, and therefore of the fault-revealing tests. In our context,
modification-traversing tests take a different definition as we are
dealing with UML designs, not code. A non-obsolete test case is
modification-traversing for a given (original, modified) program
pair if and only if it triggers a changed message, based on Defini-
tion 1 in Section 3.1.

In our context, showing that all modification-traversing test
cases are selected entails that we show that (1) all design modifi-
cations to the UML diagrams are detected and properly classified
and that (2) based on the detected modifications to the design,
we correctly classify test cases as retestable, when the test case
is modification-traversing. To address issue (1), we systematically
look at all the diagram elements and consider how changing, delet-
ing, and adding them would precisely translate into diagram
changes (Section 3). For example, we carefully defined what a
changed operation would be in a class diagram based on available
information in the original and modified class diagrams. Those sets
of changed elements were precisely and formally defined,12 In
terms of empirical evidence, we have not encountered in any of

11 In this classification of test cases, RTSB(t) represents the sequence of boundary
messages triggered by test case t.

12 Recall that, putting aside the identification of deleted sequences of boundary
messages to classify obsolete test cases, we do not identify additions and deletions of
UML diagrams elements, as such changes results in changes we account for since we
assume diagrams are consistent.
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our case studies any changes to the diagrams (that were a priori
known, as we defined and implemented system changes that trans-
lated into diagram changes) that were not detected and properly
classified by the tool. With respect to issue (2), recall that a non-ob-
solete test case is classified as retestable if any of the actions in the
test sequence, or any other element of its corresponding message in
the sequence diagram (e.g., guard condition), are changed. How this
is detected from the diagrams is described in Sections 3.3, 3.4 and
3.6 where we aim at being complete in accounting for all possible
diagram changes and in determining which changes lead to changed
messages and message sequences. Based on the traceability between
sequences in sequence diagrams and test cases, we then determine if
a test case is modification-traversing and therefore retestable.

There is one issue though, which was not relevant in the context
of code-based techniques. Certain code modifications will not be
visible in the UML design diagrams: A change to an operation
implementation will not be visible if its contract (pre and postcon-
dition) is not affected, its signature is not changed, or if no attribute
(or query operation) used by the contract of the operation is chan-
ged. In that case, certain code modification-traversing (and there-
fore fault-revealing) tests may not be selected and, as a result,
any technique based on UML designs cannot be safe in the sense
of the HR framework. One simple solution would be to ask the peo-
ple changing the UML diagrams to indicate if they expect such
changes in operation implementations and make a note of it, in a
predefined way (e.g., using UML note boxes or stereotypes on the
class diagram). Though this issue is an inherent drawback of using
design representations as a basis for impact analysis and regression
testing, we have not encountered such cases in our case studies. It
is clear, however, that such a situation is possible and should be
dealt with in one of the ways suggested above and by extending
our definitions to account for changes in operation implementa-
tions. Another alternative, that remains to be investigated in prac-
tice, is to consider the test selection based on design changes a first
step and, once the changed code is available, to determine what
additional test cases will need to be considered retestable based
on code changes not visible in the design. If the number of such
test cases happens to be too large, that would of course defeat
the purpose of early test selection.

Our algorithm cannot be considered safe if there is any other
mechanism, not accounted for in our definitions, that would lead
to changed messages in sequence diagrams. Though we cannot
prove (in a formal sense) that the selection is safe, none of the case
studies have exhibited cases where a modification-traversing test
case was not classified as retestable by our tool.

4.2. Precision

According to the RH framework, in order to show that our ap-
proach is precise, we have to show that we only select non-obso-
lete tests that can produce different program outputs in the
modified system version. Program outputs in our context corre-
spond to output data in messages sent by boundary classes to ac-
tors. As discussed in [27], there is no algorithm to determine, for
arbitrary programs, changes, and test cases, the precision of a
selection method. We therefore need to rely on empirical evidence.
To analyze precision, for each test case classified as retestable in
our case studies, we perform the following analysis:

� We determine whether the test case triggers a changed message.
� If this is the case, we determine whether any fault in the chan-

ged message (or any other message it triggers) could lead to a
different program output. A constraint in finding such a fault
is that the set of changes to the design should not be affected
by the fault, i.e., we assume the code changes and design
changes are consistent.

� If we can find at least one such fault, then we conclude that the
test case was appropriately selected for safe regression testing
(retestable).

If all the test cases selected in our case studies have been appro-
priately retained as retestable, then we can claim the method,
based on the available empirical evidence, is precise.

Following the above procedure, in our case studies, we per-
formed a manual analysis of all the test cases classified as retest-
able. We only found, across our three case studies, one
occurrence of a test case that did not really need to be retested.
The imprecision came from the fact that, for a given operation with
alternative postconditions (disjuncts), we do not carefully analyze
which postcondition applies in the context of a given test case. In
that particular example, a query operation used in the postcondi-
tion of another operation was changed and the test case happened
to execute that operation and was therefore considered retestable.
However, in the scenario of the test case, that query operation was
not actually executed. That case is described in detail in [5].

The results of this analysis suggest that cases of imprecision in
classifying test cases as retestable are rare. More case studies are of
course required to confirm our observation and a future research
question is to determine whether a refinement in the analysis of
postconditions would be worth the effort and additional time
complexity.

4.3. Efficiency

According to the RH framework, several factors affect efficiency
(i.e., space and time requirements) and should be investigated. The
first one is the phase of the lifecycle where the regression test tech-
nique performs its activities. In our case, most of the analysis can
be performed during the so-called preliminary phase, that is during
the phase where corrections to the systems are being designed and
implemented. Actually, we expect the analysis to be performed be-
fore any change code is even implemented. This should be, in prac-
tice, an important advantage over code-based techniques as the
regression test effort can be planned for earlier on, when there is
still flexibility concerning the release deadline and content.

The second factor is automatability. We show in Section 5 how
the whole process can be automated. We developed a tool
(RTSTool) that demonstrates the feasibility to automate in a com-
prehensive way all the principles introduced in the current paper.
Though not industry strength, the tool has been applied to three
case studies without any problem.

The third factor is the extent to which the technique must com-
pute information on program modifications. We show, in Section 3,
how the relevant sets involved in classifying test cases are defined.
The time complexity of the corresponding algorithms is a function
of the number of model elements in the original and modified UML
models. In particular, a careful analysis shows it strongly depends
on the number of operations and messages in the class and se-
quence diagrams, respectively.13 Though these numbers may be-
come large in real systems, they tend to be much smaller than the
number of control flow paths or definition/use pairs in code control
and data flow analysis. This is the main reason why a design-based
impact analysis is likely to be more efficient than a code-based
one [12].

The last factor is the ability of the technique to handle cases
where the new version results from multiple modifications, with-
out any redundant computations when working separately on

13 The specific results of the worst-case complexity analysis are not reported here as
they strongly vary, depending on detailed algorithmic and implementation choices.
Suffice to say that the relationship between computational time and, say, number of
operations or messages, is not exponential and can therefore scale up to large models.
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individual modifications (as it is the case for some white-box tech-
niques [27]). We have seen in Section 3 how modifications are
being detected. In our method and tool, there is no difference be-
tween cases where one or multiple modifications are performed
to create the new system version. All the information used for
the test classifications is computed once by comparing the original
and new design versions.

4.4. Generality

This criterion relates to the ability of the selection technique to
apply to a wide and practical range of situations. Our technique
obviously applies to software that is designed using the UML. This
is a practical restriction but as the use of UML spreads [25], that
should become less and less constraining.

Our selection technique handles all possible modifications to
the UML diagrams we consider. As mentioned above, we consider
the diagrams that are the most likely to be used in practice: use
case diagram, class diagram, and interaction (sequence) diagram.
Assuming state machine diagrams would be used, any change to
a statechart should result in a change in the sequence diagrams
and/or the OCL contracts. That would therefore not increase our
capability to detect faults and would impose additional constraints
on the use of UML.

The only assumption we make regarding the testing or mainte-
nance environment is that a UML case tool be used to ensure dia-
grams are consistent and that it has the capability of exporting XMI
files that can be imported into RTSTool.

5. Regression Test Selection Tool (RTSTool)

The first subsection describes the functionality of the Regres-
sion Test Selection Tool (RTSTool) we built based on the principles
described in the previous sections, and highlights some of the most
interesting technical details, whereas the second subsection fo-
cuses on how traceability between design and test cases is imple-
mented. More technical details on the RTSTool architecture can be
found in [5].

5.1. Functionality

The RTSTool main functionality is to classify regression test
cases as obsolete, retestable, and reusable, based on the design
information of the old and new system versions and traceability
information between the UML design and test cases. Its inputs
are the UML diagrams of two system versions (XMI files produced
by UML case tools) along with the original regression test suite. It
then compares the two versions of each diagram type (class, use
case, and sequence) and classifies test cases. Future functionalities
that can be easily added to the current architecture include the
generation of new regression test cases based on the new versions
of UML diagrams (e.g., [3]). Furthermore, the results of the impact
analysis (i.e., added, deleted, and changed model elements) can
easily be used for other purposes than regression test selection,
e.g., to assess the effort of producing the new version or to make
a decision on whether to include a change in the next version [4].

RTSTool is independent of any specific UML case tool since it
uses XMI as a data interchange format. It can be extended to ac-
count for refinements to the test case classification strategy (e.g.,
considering additional UML diagrams), changes in UML or XMI
standards, or changes to the test case representation, since those
aspects are encapsulated in their respective packages and un-
known to other packages. Additionally, RTSTool uses an object-ori-
ented database management system to store the different versions
of UML models and test cases, thus allowing the reuse of previ-

ously loaded diagrams or test cases. The interested reader is re-
ferred to [5] for more details on RTSTool.

The RTSTool tool is implemented with Java (Java 2 Platform,
Standard Edition version 1.4), and consists of 131 classes and
11704 lines of code (without comments). Our implementation of
the UML metamodel counts for 97 classes and 5705 lines of code.

5.2. Test cases and traceability

We describe here how the traceability between test cases and
sequence diagrams is represented and implemented.

5.2.1. Representation of test cases
Any test case is associated with a sequence of triplets (action

name, source classifier name, target classifier name). It specifies
the sequence of actions resulting from a test case. In the test driver,
a functional test case will consist of operation invocations, signals
being sent (e.g., placed in a queue), and object creations as well as
destructions, when the language permits. All the messages to
boundary classes [6] will directly or indirectly trigger subsequent
actions so as to complete a use case scenario. We associate the
complete action sequences to test cases (as opposed to just action
sequences on boundary objects) as determining changes in non-
boundary actions will be necessary to classify test cases as reusable
or retestable (Section 3.6).

5.2.2. Representation of sequence diagrams
In the same way as the test sequences, messages in sequence

diagrams are triplets (message label, source classifier name, target
classifier name). However, the information about messages is more
complete as, in addition to action names, we have possible argu-
ments in message labels. Furthermore, in order to represent every
possible message sequence in sequence diagrams, each sequence
diagram is represented using a regular expression whose alphabet
is composed of the above triplets [3]. This facilitates automation in
our algorithms since we can then easily check whether a test case
is a legal sequence of a regular expression (i.e., a sequence dia-
gram), and therefore whether a test case can be executed given
the design described by a sequence diagram.

5.2.3. Traceability
To automate test selection, we need to have traceability be-

tween the UML design and regression test cases (i.e., implement
RTS and RTSB defined in Section 3.6), so that we can determine the
effect of design changes on those test cases. Traceability is simply
an association between test cases and sequence diagrams, each
test case testing a use case scenario. We therefore implement
traceability as a mapping between sequence diagram scenarios
(i.e., a complete message sequence through the sequence dia-
grams) and test cases. A test case exercises, for each use case it exe-
cutes, only one scenario but one scenario can be exercised by
several test cases.

6. Case studies

In this section we apply our methodology, using the RTSTool, on
three different case studies. The first one is a real system developed
by a Telecom company, which underwent a major design change.
The second and third studies are systems developed by teams of
students that were subsequently modified. The advantage of using
student systems was that we could define a variety of changes so
as to make the studies more diverse and interesting. In a comple-
mentary fashion, the industrial case study provided a more realis-
tic context in which to apply our tool. In all three cases, we first
describe the system and then discuss the changes that were per-
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formed and present the results of the regression test selection
using RTSTool.

Though of modest sizes, more specifically of the size of a typical
subsystem, our three case studies provide insight into how our
model-based approach performs. They are also, to the best of our
knowledge (Section 7), larger in size than all the case studies that
have been reported (with sufficient details) in the literature on
model-based regression testing. For instance, the work in [31] re-
ports a case study with 19 classes and 31 class relationships, three
versions with 32 and 10 model changes from version 1–2 and ver-
sion 2–3, respectively. In [7] the authors used three components of
IBM Websphere that required 306 test cases (no technical detail is
reported). An extended finite state machine with five states and
eleven transitions is used in [15]. In other related work such as
[10,17,33], no evaluation is reported. Only [22] in a recent study
used a larger model: a labeled transition system with 80 states
and 244 transitions. More experiments are definitely required to
evaluate these different alternative model-based strategies.

6.1. An IP Router

This system, developed by a Telecom company, is part of an IP
router. It provides a generic mechanism for software agents to dis-
cover and subsequently communicate with one another in the net-
work. Its main function is to register new agents as they join the
network and add them to the discovered set of agents. It also re-
moves the terminated agents. The system is involved in construct-
ing and distributing a global table during the startup process of the
router. The table maps each process ID in the network to its socket
address (IP address, UDP port). The system maintains and distrib-
utes the table to other agents in the network: each agent receives
a copy of the global table during the agent initialization process.
Agents in the network use this table to send messages to other
agents.

The first version of the system is specified by 11 use cases, cor-
responding to 11 sequence diagrams, and contains nine classes de-
fined by a total amount of 18 attributes and 70 operations. The
original test suite contains 596 test cases, that is 546 functional
test cases built according to the strategy defined in [3], and 50
non-functional test cases mostly looking at performance and scala-
bility issues.

The second version of the class diagram contains the same nine
classes as the first version, but 16 attributes and 75 operations. De-
tailed statistics on the changes between versions are shown in Ta-
ble 1. Many of the changes in the class diagram consisted in
moving responsibilities (i.e., operations) from one class to another.
Some operation parameters were also merged to reduce the size of
the data exchanged over the network (e.g., the table), thus reduc-
ing the messaging overhead associated with the downloading of
this data. Two sequence diagrams show a deleted boundary oper-

ation. In the nine remaining sequence diagrams, the boundary class
operations and their invocation sequences remain unchanged.
However, we find they all contain added or deleted non-boundary
class operations by analyzing the class diagrams. From these
change descriptions, we can see that all the 11 use cases were
changed in one way or another.

Eight of the 546 functional test cases execute scenarios that
map to the two sequence diagrams that show a deleted boundary
class operation. Their execution is no longer possible and they are
classified as obsolete. Since all the other sequences are modified,
all the remaining 538 functional test cases are classified as retest-
able (Table 1) and no functional test case is reusable. None of the
non-functional test cases implies a change in the sequence of
boundary operations. Only 18 contain added or deleted operations
in their sequence. Then 32 non-functional test cases are reusable
and 18 are retestable.

From the above results we can see that no significant selection
gain could be obtained for functional test cases. The changes per-
formed between the two versions affected all test cases and re-
quired them to be tested to achieve safe regression testing.
Though their number is much smaller, the reduction in non-func-
tional test cases was, however, substantial as 32/50 test cases were
reusable. Those results do not allow us to draw any formal conclu-
sion regarding the precision of test selection but they were re-
viewed by developers and were considered to make sense
considering the extent of changes between the two versions. The
fact that such a test selection could be automated based on UML
design information was also considered a significant advantage.

6.2. An automated teller machine system

The second case study is an Automated Teller Machine (ATM)
system, developed by a team of students. The ATM design model
contains 20 classes, 74 operations, 31 attributes and 15 use cases.
The ATM’s main function is to perform transactions based on the
user’s inputs. Four types of transactions can be carried out: Depos-
it, Withdraw, Transfer, and Inquiry. What is specific to the use case
diagram for the ATM is that all of the use cases, except for two of
them, depend on one main use case, doTransaction, that de-
scribes the details of how the system performs transactions
(Fig. 4). All the other use cases are either inclusions or extensions
of doTransaction. The two other use cases describe the start
up and shut down procedures of the ATM. The test set for the sys-
tem contains 30 functional test cases, developed using the method-
ology described in [3]. Most test cases test a different transaction,
combination of transactions or error conditions which may arise
when performing a transaction. However almost all of these test
cases execute that main high-level use case, doTransaction,
therefore we can already foresee that if there is a change to
doTransaction all these test cases will be classified as retestable.
Two test cases exercise the start up and shut down procedures of
the ATM.

Four different logical changes were performed from this original
design, and we present them, as well as the result in terms of
regression test selection, in the following subsections.

6.2.1. First logical change (version 2 of the ATM)
The first logical change has to do with how many times a user

could enter an incorrect PIN number. In the original system there
was no limit to that number. In the new version a user has only
three attempts to enter a valid PIN before their card is retained
by the system. This logical change translates into one new attribute
(to record the number of attempts to enter a PIN), four added oper-
ations (e.g., to manipulate that attribute), and three changed oper-
ations, resulting in two changed classes. Those new operations are
used in three sequence diagrams (Table 2).

Table 1
Impact analysis and regression test selection results (IP Router).

Total (V.1) Added Changed Deleted Total (V.2)

Detected changes
Attributes 18 1 3 3 16
Operations 70 21 0 16 75
Classes 9 0 6 0 9
Use cases 11 0 11 0 11

Regression test selection

Test cases

Total Obsolete Retestable Reusable

Functional 546 8 538 0
Non-functional 50 0 18 32
Total 596 8 556 32
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As shown in Table 2, of the 30 test cases in this study, 28 were
classified as retestable and only 2 were reusable. The reason for
this lies in the type of change that was made. The 28 test cases that
are retestable all explore situations where the user wants to per-
form a transaction, and to do so the user must first enter a card into
the machine. Although the change description has to do with how
many times the PIN is entered the GetPIN use case is not the only
one affected: CardInsert and doTransaction are also affected
by these changes. The two test cases that are reusable are the ones
that test the start up and shut down procedures and do not involve
the user putting a card in the machine and entering a PIN number.

6.2.2. Second logical change (version 3 of the ATM)
The second logical change imposes some extra restrictions on

the savings type of account. In the original system savings and che-
quing accounts were identical in terms of which transactions could
be performed on them. In the new version a user cannot withdraw
money directly from an account of type savings. Therefore in order
to remove their money from a savings account they must first
transfer the money to a chequing account. This translates into
the changes reported in Table 3.

When first reading the change description one would come to
the conclusion that only test cases involving a withdrawal transac-
tion would need to be retestable. However since this change re-
sulted in a new error condition which is checked after each
transaction, all 25 test cases which perform a transaction are con-
sidered retestable. The five test cases which are reusable explore
the following situations: startup, shutdown, card not readable, the
user presses the cancel button when the PIN is requested and the
user presses the cancel button when the transaction type is re-
quested. In these five test cases no transaction is performed which
is why they are classified as reusable.

6.2.3. Third logical change (version 4 of the ATM)
The third logical change has to do with the cash dispenser. The

current dispenser only holds twenty dollar bills. The new dispenser
will be able to handle twenty and five dollar bills. This results in
the changes reported in Table 4.

There are only nine test cases which perform a successful with-
drawal: they are classified as retestable. The other 19 test cases
either perform startup, shutdown, a transaction other than with-
drawal or a withdrawal in which an error occurs before the cash
is dispensed. In contrast with the second change this version of
the system behaves as one would intuitively think: A change has
been made to the way a withdrawal transaction is executed and
only the test cases which exercise the corresponding behavior need
to be retested.

6.2.4. Fourth logical change (version 5 of the ATM)
In this version of the system, it was decided to merge two

boundary classes for use cases ATMStartUp and ATMShutOff,
and that the operator would be required to enter a password in or-
der to complete the start up and shut down of the ATM. The
RTSTool reports the changes of Table 5.

Since a boundary class involved only in use cases ATMStartUp
and ATMShutDown has been removed, the ATMStartUp and the
ATMShutDown test cases are obsolete (two test cases), and the
other test cases are reusable (Table 5).

Fig. 4. Use case diagram for the ATM case study.

Table 2
Impact analysis and regression test selection results (ATM, V.2).

Total (V.1) Added Changed Deleted Total (V.2)

Detected changes
Attributes 31 1 0 0 32
Operations 74 4 3 0 78
Classes 20 0 2 0 20
Use cases 15 0 3 0 15

Regression test selection

Test cases

Total Obsolete Retestable Reusable

30 0 28 2

Table 3
Impact analysis and regression test selection results (ATM, V.3).

Total (V.1) Added Changed Deleted Total (V.3)

Detected changes
Attributes 31 1 0 0 32
Operations 74 0 2 0 74
Classes 20 0 3 0 20
Use cases 15 0 1 0 15

Regression test selection

Test cases

Total Obsolete Retestable Reusable

30 0 25 5

Table 4
Impact analysis and regression test selection results (ATM, V.4).

Total (V.1) Added Changed Deleted Total (V.4)

Detected changes
Attributes 31 0 0 0 31
Operations 74 4 1 0 78
Classes 20 0 1 0 20
Use cases 15 0 1 0 15

Regression test selection

Test cases

Total Obsolete Retestable Reusable

30 0 9 21
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6.3. A cruise control and monitoring system

The cruise control system is made up of 37 classes, 62 attri-
butes, 64 operations and 11 use cases. The main functionality of
this system is to emulate the cruise control feature of an automo-
bile. The user is able to turn on and off the car, press the gas and
break pedals, set a desired cruising speed, accelerate the car to a
new speed, turn off cruise control, resume to the desired speed
and view the current speed, average trip speed and average trip
fuel consumption. Three of the 11 use cases describe a behavior
that is constantly being executed in the background (i.e., Update
Shaft Rotation, Determine Distance and Speed and Calculate Trip
Speed and Fuel Consumption) and are thus not considered in the
experiment. The remaining eight use cases are Turn On Engine,
Turn Off Engine, Cruise, Resume, Accelerate, Cruise Off,
Throttle Pressed and Brake Pressed. The system testing
strategy we used produced 323, 614 test cases [3,5]. This seem-
ingly large number stems from the nature of the system and the
method used to derive system test cases [3] and is not an issue
in our context as we are looking at the proportions of obsolete,
retestable, and reusable test cases. The testing method consists in
identifying possible execution sequences of use cases from use
case sequential dependencies when such constraints exist or from
the interleaving of un-constrained use cases. Other than turning
the cruise control on first and off to end, there are very few sequen-
tial constraints in the cruise control system, thus resulting in an
extraordinary large number of possible use case sequences (due
to interleavings). Then, when developing test cases for the cruise
control we, additionally, arbitrary selected only sequences that
exercise at most twice the use cases involved in sequences, in an
attempt to control the number of test cases generated. (Note that
the combinatorial explosion of use case sequences due to inter-
leavings in an open issue in [3].)

6.3.1. First logical change (version 2 of the CCS)
In the original version of the system when the driver selects the

‘accelerate’ position of the cruise control lever, the car accelerates
at a rate of 10 mph per second. The change that is introduced in
version 2 allows the driver to set the rate of acceleration from
1 mph per second to 40 mph per second. A slider is added to the
user interface and the position of the slider tells the system at
which rate to accelerate. The results of this logical change are re-
ported in Table 6.

These changes only affect the Accelerate use case. Therefore all
test cases which exercise the accelerate use case are considered
retestable and all the rest of the test cases are reusable.

6.3.2. Second logical change (version 3 of the CCS)
In the second change to this system the structure of the system

is examined to determine the concurrent tasks. When examining
the cruise control subsystem it is noted that the engine and brake

are passive input devices that need to be polled every 100 millisec-
onds. The polling of these two devices is combined into one task
called AutoSensors which will be triggered by a timer every
100 milliseconds. As a result the RTSTool reports the changes in Ta-
ble 7: The BrakePressed, TurnOnEngine and TurnOffEngine

use cases are deleted and replaced by a use case named Brake

and Engine Signals.
Due to the deletion and addition of use cases all test cases that

invoke a scenario of the use cases that were deleted are classified
as obsolete. Since every test case contains the TurnOnEngine

and TurnOffEngine use case, all of the test cases in the test suite
are classified as obsolete.

6.3.3. Third logical change (version 4 of the CCS)
In the third change a button is added to enable the driver to

cancel the desired speed that is saved in the system. This can be
used when the driver wants to set a new desired speed. The
changes are shown in Table 8.

These changes did not affect any existing functionality (i.e.,
messages sent while executing existing use cases) of the system
therefore all of the test cases can be considered reusable.

Table 5
Impact analysis and regression test selection results (ATM, V.5).

Total (V.1) Added Changed Deleted Total (V.5)

Detected changes
Attributes 31 2 0 0 33
Operations 74 6 1 4 76
Classes 20 0 4 1 19
Use cases 15 0 2 0 15

Regression test selection

Test cases

Total Obsolete Retestable Reusable

30 2 0 28

Table 6
Impact analysis and regression test selection results (CCS, V.2).

Total (V.1) Added Changed Deleted Total (V.2)

Detected changes
Attributes 62 0 0 0 62
Operations 64 1 2 0 65
Classes 37 1 1 0 38
Use cases 8 0 0 0 8

Regression test selection

Test cases

Total Obsolete Retestable Reusable

323, 614 0 318, 508 5106

Table 7
Impact analysis and regression test selection results (CCS, V.3).

Total (V.1) Added Changed Deleted Total (V.3)

Detected changes
Attributes 62 3 0 0 65
Operations 64 0 0 5 59
Classes 37 1 2 2 36
Use cases 8 1 0 3 6

Regression test selection

Test cases

Total Obsolete Retestable Reusable

323, 614 323, 614 0 0

Table 8
Impact analysis and regression test selection results (CCS, V.4).

Total (V.1) Added Changed Deleted Total (V.4)

Detected changes
Attributes 62 0 0 0 62
Operations 64 3 0 0 67
Classes 37 0 2 0 37
Use cases 8 1 0 0 9

Regression test selection

Test cases

Total Obsolete Retestable Reusable

323, 614 0 0 323, 614
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6.3.4. Fourth logical change (version 5 of the CCS)
In the fourth change a lower limit was added to desired cruising

speed: if the car is traveling at a speed less than 20 mph the driver
will not be able to set the desired cruising speed. The changes are
reported in Table 9.

All test cases which exercised one of the changed use cases,
either Cruise or Resume are considered retestable. The rest of
the test cases are reusable.

6.4. Conclusions from the case studies

In some cases, the number of reusable test cases represented a
large proportion (up to 100%): It seems to indicate that substantial
savings can be obtained, especially since the whole process can be
automated.

However, the case studies have shown that changes can have a
widely variable impact on the resulting system. Large numbers of
test cases may be obsolete, retestable, or reusable. In some cases
the results are intuitive, in others the RTSTool was useful to un-
cover unexpected retestable test cases. But in general, we expect
such a technology to be even more useful for large systems, involv-
ing many designers in diagram changes, when no one has a com-
prehensive understanding of all the use cases and their design. In
such a system, a manual impact analysis would likely lead to er-
rors, especially in a context with typical project pressures.

7. Further related work

As noted in [31], a large portion of the regression testing strat-
egies are white-box strategies [13,28,32] and require code analysis.
As in [31], our work focuses on model-based testing where changes
related to functionality of a system are regression tested. The ap-
proach described in [31] uses a functional model (referred to as
the ‘‘domain model”) of the system under test to generate test
cases and builds a mapping between changes to the domain model
and the impact it has on test cases, so as to classify them. However,
their working context is very different from ours as it is based on a
non-object-oriented, black-box testing strategy. More recent mod-
el-based regression test selection techniques are more comparable
to our work. In [7] regression tests are selected from UML activity
diagrams representing software behavior. Since an activity dia-
gram is similar to a control flow graph, the authors adapt a regres-
sion test selection algorithm originally defined for C++ source code
regression test selection [29]. They also discuss a risk-based regres-
sion test selection technique, whereby additional tests are selected
according to both their cost and the risk involved in not selecting
them in terms of failure consequences. As suggested by the
authors, this may be a way of coping for code changes that do
not translate into design changes. In [33], a regression test selec-
tion strategy for systems designed with the UML (class, collabora-
tion and state diagrams) is presented. It addresses a different

objective from ours since the authors focus on component-based
systems. Furthermore, the description of change identification
and the description of how this information is actually used for test
selection are rudimentary and does not account for as much of the
UML notation as our solution. In [17] the authors also present a
model-based test regression strategy for UML. They only consider
the structural aspects of the UML design though (class diagram)
and the regression strategy is only succinctly described. In [10] a
model (UML-like) based regression test selection strategy is also
succinctly described and there are not enough details available
for us to really compare it with our approach. In [22,23] the archi-
tecture of a software system, comprising structural (topological)
and behavioral (labeled transition system) models (these are not
UML models though), is used to perform regression test selection.
The labeled transition systems are combined with structural infor-
mation to build graphs (unfortunately, not much details are pro-
vided on that aspect) and existing code-based regression test
selection algorithms are used. More recently, control and data
dependencies between states and transitions in an extended finite
state machine have been used to identify the impact of model
modifications and perform regression test selection ([15] extended
in [8]). We consider this work as complementary to ours since it
focuses on another type of model (state machine), though it is once
again not directly applicable in the context of UML-based
development.

One last work related to the use of UML has been presented in
[26]. The objective is very different from all the previously dis-
cussed strategies, including ours, since the authors present a tech-
nique to regression test UML models rather than select regression
tests from UML models: model (regression) testing vs. model-
based (regression) testing of the executable system.

There exist a number of papers proposing object-oriented, code-
based test selection techniques [13,28]. Rothermel et al. propose a
solution for C++ based on interprocedural control flow graphs aug-
mented with a careful analysis of non-executable statements,
which can also affect test case executions. An algorithm is provided
to select test cases for application programs using changed classes
and their derived classes. Harrold et al. focus on Java and the prob-
lem of handling incomplete programs, due to the fact that third-
party software or external libraries are commonly used. Xie et al.
use program spectra, i.e., distributions of path executions (i.e., exe-
cution profiles), to perform regression test selection.

8. Conclusion

We propose here a methodology supported by a prototype tool
to tackle the regression test selection problem at the architecture/
design level in the context of UML-based development. Our main
motivation is to enable, in the context of UML-based development,
regression test selection based on design change information, early
in the change process. We also present three case studies that were
used as an initial feasibility and benefit assessment. These case
studies are varied in the sense that they cover very different sys-
tems and changes, in both industrial and academic settings. Results
show that design changes can have a complex impact on regression
test selection and that, in many cases, automation is likely to help
avoid human errors. Our objective has been to ensure that regres-
sion testing was safe while minimizing regression testing effort.
But we have shown that certain changes may not be visible in
the design and may require additional attention during coding or
a special way to document them during design. Another limitation
is that, based on UML design information, test selection may not be
as precise as if it was based on detailed code analysis (see exam-
ples in [13,29]). Improving precision by analyzing in more detail
guard conditions and OCL contracts is the focus of our current re-

Table 9
Impact analysis and regression test selection results (CCS, V.5).

Total (V.1) Added Changed Deleted Total (V.5)

Detected changes
Attributes 62 0 1 0 62
Operations 64 0 1 0 64
Classes 37 0 1 0 37
Use cases 8 0 2 0 8

Regression test selection

Test cases

Total Obsolete Retestable Reusable

323, 614 0 318, 502 5106
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search. However, our case studies have only shown one case of
imprecision in classifying a test case as retestable.

Despite the above limitations, by providing a methodology and
tool to perform impact analysis and regression test selection based
on UML designs, we hope to achieve:

– Higher efficiency in test selection based on the automation of
design change analysis and traceability between UML designs
and regression test cases.

– Better support for assessing and planning regression test effort
earlier in the change process, that is once design changes have
been determined.

As future work, it is important to run additional case studies to
assess the drawbacks and advantages of working with UML designs
instead of code to support regression test selection. A detailed cost-
benefit analysis is required. A comparison of UML-based and code-
based techniques should also be investigated within realistic set-
tings in order to realistically assess the loss caused by working at
a design level.
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