Invited Talk at the New York University, Polytechnic School of Engineering

The NorNet Testbed – Overview and Selected Results from Multi-Path Transport Research

Thomas Dreibholz, dreibh@simula.no
Simula Research Laboratory

May 5, 2014
Contents

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion
Overview:

Motivation

The NorNet Testbed
 - NorNet Core
 - NorNet Edge

Selected Research Topics

Conclusion
Motivation: Robust Networks

- More and more applications rely on ubiquitous Internet access!
- However, our current networks are not as robust as they should be ...

How to make networks more robust?
Resilience by Redundancy

Multi-Homing

- Connections to multiple Internet Service Providers (ISP)
- Idea: if one ISP has problems, another connection still works

Is resilience really improved? What about multi-path transport?
Idea: A Testbed for Multi-Homed Systems

- A multi-homed Internet testbed would be useful
 - Something like PlanetLab?
 - Perhaps with better node availability?
 - Support for mobile access (e.g. 3G) as well as wired?
- **NorNet** – A research testbed for multi-homed systems!
 - Lead by the Simula Research Laboratory in Fornebu, Norway
 - Supported by Forskningsrådet

[Research in realistic setups is necessary!](https://www.nntb.no)
Overview:
The NorNet Project

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion
Goals of the NorNet Project

- Building up a **realistic** multi-homing testbed
- Wired and wireless
 - Wired → “NorNet Core”
 - Wireless → “NorNet Edge”
- Perform research with the testbed!

How to get a **realistic** testbed?
Idea: Distribution of NorNet over whole Norway

- **Challenging topology:**
 - Large distances
 - A few “big” cities, many large rural areas
 - Svalbard:
 - Interesting location
 - Many polar research institutions

- **NorNet Core:**
 - Currently 11+3 sites

- **NorNet Edge:**
 - Currently ca. 400 nodes
Overview:
NorNet Core

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion
Idea: Tunnelling

- Researchers require control over used ISP interfaces
 - Which outgoing (local site) interface
 - Which incoming (remote site) interface

- Idea: Tunnels among sites
 - Router at site A: IPs A_1, A_2, A_3
 - Router at site B: IPs B_1, B_2
 - IP tunnel for each combination:
 $A_1 \leftrightarrow B_1$, $A_1 \leftrightarrow B_2$, $A_2 \leftrightarrow B_1$, $A_2 \leftrightarrow B_2$, $A_3 \leftrightarrow B_1$, $A_3 \leftrightarrow B_2$
 - Fully-connected tunnel mesh among NorNet Core sites (< 20)
 - Each site's router (called **tunnelbox**) maintains the tunnels
 - Static tunnels
 - NorNet-internal addressing and routing over tunnels
A usual NorNet Core site:

- 1x switch
- 4x server
 - 1x tunnelbox
 - 3x research systems
- At least two ISP connections
 - Uninett
 - Other providers
- IPv4 and IPv6 (if available)
Site Deployment Status
(May 2014)

<table>
<thead>
<tr>
<th>Site</th>
<th>Location</th>
<th>ISP 1</th>
<th>ISP 2</th>
<th>ISP 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simula Research Laboratory</td>
<td>Fornebu, Akershus</td>
<td>UNINETT</td>
<td>Kvantel</td>
<td>Telenor ²</td>
</tr>
<tr>
<td>Universitetet i Oslo</td>
<td>Blindern, Oslo</td>
<td>UNINETT</td>
<td>PowerTech</td>
<td>Broadnet ²</td>
</tr>
<tr>
<td>Høgskolen i Gjøvik</td>
<td>Gjøvik, Oppland</td>
<td>UNINETT</td>
<td>PowerTech</td>
<td></td>
</tr>
<tr>
<td>Universitetet i Tromsø</td>
<td>Tromsø, Troms</td>
<td>UNINETT ¹</td>
<td>PowerTech</td>
<td>Telenor ²</td>
</tr>
<tr>
<td>Universitetet i Stavanger</td>
<td>Stavanger, Rogaland</td>
<td>UNINETT ¹</td>
<td>BKK</td>
<td></td>
</tr>
<tr>
<td>Universitetet i Bergen</td>
<td>Bergen, Hordaland</td>
<td>UNINETT ¹</td>
<td>BKK</td>
<td></td>
</tr>
<tr>
<td>Universitetet i Agder</td>
<td>Kristiansand, Vest-Agder</td>
<td>UNINETT</td>
<td>PowerTech</td>
<td></td>
</tr>
<tr>
<td>Universitetet på Svalbard</td>
<td>Longyearbyen, Svalbard</td>
<td>UNINETT ¹</td>
<td>Telenor ²</td>
<td></td>
</tr>
<tr>
<td>NTNU Trondheim</td>
<td>Trondheim, Sør-Trøndelag</td>
<td>UNINETT</td>
<td>PowerTech</td>
<td></td>
</tr>
<tr>
<td>Høgskolen i Narvik</td>
<td>Narvik, Nordland</td>
<td>UNINETT</td>
<td>PowerTech</td>
<td></td>
</tr>
<tr>
<td>Høgskolen i Oslo og Akershus</td>
<td>St. Hanshaugen, Oslo</td>
<td>UNINETT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Duisburg-Essen</td>
<td>Essen/Germany</td>
<td>DFN</td>
<td>Versatel ³</td>
<td></td>
</tr>
<tr>
<td>Hainan University</td>
<td>Haikou, Hainan/China</td>
<td>CERNET ¹</td>
<td>Unicom ¹</td>
<td></td>
</tr>
<tr>
<td>Karlstads Universitet</td>
<td>Karlstad, Värmland/Sweden</td>
<td>SUNET</td>
<td>– ⁴</td>
<td></td>
</tr>
</tbody>
</table>

1) IPv6 available from ISP, but not deployed to setup
2) IPv6 not available from ISP ☹
3) Consumer-grade ADSL connection
4) Negotiations in progress
Remote Systems

Our servers may be really remote!

The “road” to Longyearbyen på Svalbard, 78.2°N
Virtualisation

- Experimentation software is experimental
- How to avoid software issues making a remote machine unusable?
- Idea: virtualisation
 - Lightweight, stable software setup: Ubuntu Server 12.04 LTS
 - VirtualBox 4.3
 - Other software runs in VirtualBox VMs:
 - Tunnelbox VM on physical server #1
 - 2 LXC-based research node VMs on physical servers #2 to #4
 - In case of problem: manual/automatic restart or reinstall of VM

“Anything that can go wrong, will go wrong.”
[Murphy's law]
Idea: *PlanetLab*-based Software for Experiments

- **Key idea:**
 - Researchers should get virtual machines for their experiments
 - Like *PlanetLab* ...
 - ... but with multi-homing and IPv6, of course

- ***PlanetLab* software:**
 - Different “stable” distributions: *PlanetLab*, *OneLab*, etc.
 - Current implementation: based on *Linux VServers*
 - Not in mainline kernel
 - Patched kernel, makes upgrades difficult
 - The future: **Linux Containers** (LXC)
 - Active development by *PlanetLab/OneLab*
 - We are maintaining a NorNet-specific branch
Overview: NorNet Edge

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion
The NorNet Edge Box: Ready for Deployment (1)

Box contents:

- Ufoboard or Beagle Bone embedded Linux system
- 4x USB UMTS:
 - Telenor, NetCom,
 - Network Norway, Tele2
- 1x ICE CDMA mobile broadband
- 1x Ethernet
- 1x WLAN (optional)
- Power supplies
- Handbook
Ufoboard:
- Debian Linux
- Kernel 3.11.x
- **MPTCP (0.88)**
NorNet Edge Visualisation

See http://demo.robustenett.no!
Overview:
Selected Research Topics

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion
Multi-Path TCP

Multi-Path TCP (MPTCP):

- Multi-path extension for TCP (RFC 6182/RFC 6824)
- Combination of sub-flows (like TCP)
- Idea: improve throughput and resilience

How behaves MPTCP in real networks?
Using NorNet Edge nodes (NNE):

- Two 3G ISPs (2G/3G)
- WLAN at the node location: real-world public WLAN hotspot (i.e. many users and interferences)
Standard MPTCP does not work very well …

3G + 3G Paths

Paths are heterogeneous

- Varying overall goodput
- High RTTs → bufferbloat!

Performance issues caused by bufferbloat!
Standard MPTCP does not work very well …
3G + WLAN Paths

How to avoid the bufferbloat issues?

The same performance issues apply for combining 3G and WLAN
Multi-Path Transport Bufferbloat Mitigation (MPT-BM)

Algorithm 1 Per-Subflow Bufferbloat Mitigation by MPT-BM

Initialization:
\(sRTT \leftarrow \infty \)
\(sRTT_{\text{min}} \leftarrow \infty \)

RTT estimation:
\(sRTT_{\text{min}} \leftarrow \min(sRTT_{\text{min}}, sRTT) \)

How many segments can be sent?
\(cwnd_{\text{limit}} \leftarrow \lambda \times (sRTT_{\text{min}}/sRTT) \times cwnd \)
\(\text{send} \leftarrow \begin{cases}
max(0, \min(cwnd, cwnd_{\text{limit}}) - \text{inflight}) & (RTT_{\text{min}} \geq \Theta) \\
max(0, cwnd - \text{inflight}) & (RTT_{\text{min}} < \Theta)
\end{cases} \)

- Idea:
 - Avoid extreme growth of the congestion window (cwnd)
 - Limitation controllable (parameter: \(\lambda \))
 - Only necessary for large RTTs (parameter: \(\Theta \))
Evaluation: Round-Trip Times

- Significant RTT reduction => bufferbloat is avoided

How does it affect the goodput?
Evaluation: Goodput

- No negative impact, sometimes even slightly better
- Variance is reduced
Evaluation:
MPTCP Buffer Delay and Buffer Size

(a) $3G_1 + 3G_2$
(b) $3G_1 + WLAN$
(c) $3G_2 + WLAN$
Further Details

https://www.nntb.no/publications
Overview:
Conclusion

- Motivation
- The NorNet Testbed
 - NorNet Core
 - NorNet Edge
- Selected Research Topics
- Conclusion
Conclusion and Future Work

- The NorNet testbed is progressing!
 - Initial deployment completed
 - Ready for experiments (also for your experiments!)

- Future work:
 - Make more NorNet Core sites multi-homed (additional ISPs, IPv6)
 - Some additional sites
 - Improve and refine management software
 - Get more users (may be you?)

And, of course, do further research!
“NorNet wants to be a building block of the railroad to heaven” ...

... and not be another unused testbed that paves the road to hell!
Coming Soon: The 2nd NorNet Users Workshop (NNUW-2)

See https://www.nntb.no/

Dates will be announced soon! (Probably: End of August 2014)
Any Questions?

Visit https://www.nntb.no for further information!