
A Search-based OCL Constraint Solver for

Model-based Test Data Generation

Shaukat Ali
1,2

, Muhammad Zohaib Iqbal
1,2

, Andrea Arcuri
1
, Lionel Briand

1,2

1
Simula Research Laboratory, Norway

2
Department of Informatics, University of Oslo, Norway

{shaukat, zohaib, arcuri, briand}@simula.no

Abstract—Model-based testing (MBT) aims at automated,

scalable, and systematic testing solutions for complex

industrial software systems. To increase chances of

adoption in industrial contexts, software systems should

be modeled using well-established standards such as the

Unified Modeling Language (UML) and Object

Constraint Language (OCL). Given that test data

generation is one of the major challenges to automate

MBT, this is the topic of this paper with a specific focus

on test data generation from OCL constraints. Though

search-based software testing (SBST) has been applied to

test data generation for white-box testing (e.g., branch

coverage), its application to the MBT of industrial

software systems has been limited. In this paper, we

propose a set of search heuristics based on OCL

constraints to guide test data generation and automate

MBT in industrial applications. These heuristics are used

to develop an OCL solver exclusively based on search, in

this particular case genetic algorithm and (1+1) EA.

Empirical analyses to evaluate the feasibility of our

approach are carried out on one industrial system.

Keywords-UML; OCL; Search-based testing; Test data;

Empirical evaluation

I. INTRODUCTION

Model-based testing (MBT) has recently received

increasing attention in both industry and academia.

MBT promises systematic, automated, and thorough

testing, which would likely not be possible without

models. However, the full automation of MBT, which

is a requirement for scaling up to large systems,

requires solving many problems, including preparing

models for testing (e.g., flattening state machines),

defining appropriate test strategies and coverage

criteria, and generating test data to execute test cases.

Furthermore, in order to increase chances of adoption,

using MBT for industrial applications requires using

well-established standards, such as the Unified

Modeling Language (UML) and its associated

language to write constraints: the Object Constraint

Language (OCL) [1].

OCL [1] is a standard language that is widely

accepted for writing constraints on UML models. OCL

is based on first order logic and is a highly expressive

language. The language allows modelers to write

constraints at various levels of abstraction and for

various types of models. It can be used to write class

and state invariants, guards in state machines,

constraints in sequence diagrams, and pre and post

condition of operations. A basic subset of the language

has been defined that can be used with meta-models

defined in Meta Object Facility (MOF) [2] (which is a

standard defined by Object Management Group

(OMG) for defining meta-models). This subset of OCL

has been largely used in the definition of UML for

constraining various elements of the language.

Moreover, the language is also used in writing

constraints while defining UML profiles, which is a

standard way of extending UML for various domains

using pre-defined extension mechanisms.

Due to the ability of OCL to specify constraints for

various purposes during modeling, for example when

defining guard conditions or state invariants in state

machines, such constraints play a significant role when

testing is driven by models. For example, in state-

based testing, if the aim of a test case is to execute a

guarded transition (where the guard is written in OCL

based on input values of the trigger) to achieve full

transition coverage, then it is essential to provide input

values to the event that triggers the transition such that

the values satisfy the guard. Another example can be to

generate valid parameter values based on the pre-

condition of an operation.

Test data generation is an important component of

MBT automation. For UML models, with constraints

in OCL, test data generation is a non-trivial problem. A

few approaches in the literature exist that address this

issue. But most of them, either target only a small

subset of OCL [3, 4], are not scalable, or lack proper

tool support [5]. This is a major limitation when it

comes to the industrial application of MBT approaches

that use OCL to specify constraints on models.

This paper provides a contribution by devising

novel heuristics for the application of search-based

techniques, such as Genetic Algorithms (GAs) and

(1+1) Evolutionary Algorithm (EA), to solving OCL

constraints (covering the entire OCL 2.2 semantics [1])

in order to generate test data. A search-based OCL

constraint solver is implemented and evaluated on the

first reported, industrial case study on this topic.

The rest of the paper is organized as follows:

Section II discusses the background and Section III

discusses related work. In Section IV, we present the

definition of distance function for various OCL

constructs. Section V discusses the case studies and

analysis of results of the application of the approach,

whereas Section VI discusses the tool support and

Section VII addresses the threats to validity of our

empirical study. Finally, Section VIII concludes the

paper.

II. BACKGROUND

Several software engineering problems can be

reformulated as a search problem, such as test data

generation [6]. An exhaustive evaluation of the entire

search space (i.e., the domain of all possible

combinations of problem variables) is usually not

feasible. There is a need for techniques that are able to

produce “good’’ solutions in reasonable time by

evaluating only a tiny fraction of the search space.

Search algorithms can be used to address this type of

problem. Several successful results by using search

algorithms are reported in the literature for many types

of software engineering problems [7-9].

To use a search algorithm, a fitness function needs

to be defined. The fitness function should be able to

evaluate the quality of a candidate solution (i.e., an

element in the search space). The fitness function is

problem dependent, and proper care needs to be taken

for developing adequate fitness functions. The fitness

function will be used to guide the search algorithms

toward fitter solutions. Eventually, given enough time,

a search algorithm will find an optimal solution.

There are several types of search algorithms.

Genetic Algorithms (GAs) are the most well-known

[7], and they are inspired by the Darwinian evolution

theory. A population of individuals (i.e., candidate

solutions) is evolved through a series of generations,

where reproducing individuals evolve through

crossover and mutation operators. (1+1) Evolutionary

Algorithm (EA) is simpler than GAs, in which only a

single individual is evolved with mutation. To verify

that search algorithms are actually necessary because

they address a difficult problem, it is a common

practice to use Random Search (RS) as baseline [7].

III. RELATED WORK

There are a number of approaches that deal with the

evaluation of OCL constraints. The basic aim of most

of these approaches is to verify whether the constraints

can be satisfied. Though most of the approaches do not

generate test data, they are still related to our work

since they require the generation of values for

validating the constraints. These approaches can be

adapted for generating test data. In Section A, we

discuss the OCL-based constraint solving approaches

in the literature. In Section B we discuss the

approaches that use search-based heuristics for testing.

A. OCL-based Constraint Solvers

A number of approaches use constraint solvers for

analyzing OCL constraints for various purposes. These

approaches usually translate constraints and models

into a formalism (e.g., Alloy [10], temporal logic

BOTL [11], FOL [12] , Prototype Verification System

(PVS) [13], graph constraints [14]), which can then be

analyzed by a constraint analyzer (e.g., Alloy

constraint analyzer [15], model checker [11],

Satisfiability Modulo Theories (SMT) Solver [12],

theorem prover [12], [13]). Satisfiability Problem

(SAT) solvers have also been used for the animation of

OCL operation contracts (e.g., [16], [17]).

Some approaches are reported in the literature that

generates test cases based on OCL constraints. Most of

these approaches only handle a small subset of OCL

and UML models and are based on formal constraint

solving techniques, such as SAT solving (e.g., [3]),

constraint satisfaction problem (CSP) (e.g., [18], [19])

and partition analysis (e.g., [5], [4]).

The work presented in [19] is one of the most

sophisticated approaches in the literature. However, its

focus is on verification of correctness properties, but to

achieve this, it also generates an instantiation of the

model. The major limitation of that approach is that the

search space is bounded and, as the bounds are raised,

the CSP faces a combinatorial explosion increase (as

discussed in [19]). The task of determining the optimal

bounds for verification is left to the user, which is not

simple and requires repeated interaction from the user.

Models of industrial applications can have hundreds of

attributes and manually finding bounds for individual

attributes is often impractical. We present the results of

an experiment that we conducted to compare our

approach with this approach in Section V.B.

Most of the above approaches are different from our

work, since we want to generate test data based on

OCL constraints provided by modelers on UML state

and class diagrams. These diagrams may be developed

for environment models or system models and the

modeler should be allowed to use the complete set of

standard OCL 2.2 notations. We want to provide inputs

for which the constraints are satisfied, and not just

verify them. We also want a tool that can be easily

integrated with different state-based testing approaches

and manual intervention should not be required for

every run.

Existing approaches for OCL constraint solving do

not fully fit our needs. Almost all of the existing works

only support a small subset of OCL. Most of the

approaches are only limited to simple numerical

expressions and do not handle collections (used widely

to specify expressions that navigate over associations).

This is generally due to the high expressiveness of

OCL that makes the definitions of constraints easier,

but their analysis more difficult. Conversion of OCL to

a SAT formula or a CSP instance can easily result in

combinatorial explosion as the complexity of the

model and constraints increase (as discussed in [19]).

For industrial scale systems, as in our case, this is a

major limitation, since the models and constraints are

generally quite complex. Most of the discussed

approaches either do not support the OCL constructs

present in the constraints that we have in our industrial

case study or are not efficient to solve them (see

Section V.B). Hence, existing techniques based on

conversion to lower-level languages seem impractical

in the context of large scale, real-world systems.

Instead of using search algorithms, another possible

approach to cope with the combinatorial explosion

faced in solving OCL constraints could be to use

hybrid approaches that combine formal techniques

(e.g., constraint solvers) with random testing (e.g.

[20]). However, we are aware of no work on this topic

for OCL and, even for common white-box testing

strategies, performance comparisons of hybrid

techniques with search algorithms are rare [21].

B. Search-based Heuristics for Model Based Testing

The application of search-based heuristics for MBT

has received significant attention recently (e.g., [22],

[23]). The idea of these techniques is to apply the

heuristics to guide the search for test data that should

satisfy different types of coverage criteria on state

machines, such as state coverage. Achieving such

coverage criteria is far from trivial since guards on

transitions can be arbitrarily complex. Finding the right

inputs to trigger these transitions is not simple.

Heuristics have been defined based on common

practices in white-box, search-based testing, such as

the use of branch distance and approach level [24].

Our goal is to tailor this approach to OCL constraint

solving for test data generation.

IV. DEFINITION OF THE FITNESS FUNCTION FOR OCL

To guide the search for test data that satisfy OCL

constraints, it is necessary to define a set of heuristics.

A heuristic would tell ‘how far’ an input data is from

satisfying the constraint. For example, let us say we

want to satisfy the constraint x=0, and suppose we

have two data inputs: x1:=5 and x2:=1000. Both

inputs x1 and x2 do not satisfy x=0, but x1 is

heuristically closer to satisfy x=0 than x2. A search

algorithm would use such a heuristic as a fitness

function, to reward input data that are closer to satisfy

the target constraint.

In this paper, to generate test data to solve OCL

constraints, we use a fitness function that is adapted

from work done for code coverage (e.g., for branch

coverage of code written in C [24]). In particular, we

use the so called branch distance (a function d()), as

defined in [24]. The function d() returns 0 if the

constraint is solved, otherwise a positive value that

heuristically estimates how far the constraint was from

being evaluated as true. As for any heuristic, there is

no guarantee that an optimal solution will be found in

reasonable time, but nevertheless many successful

results are reported in the literature for various

software engineering problems [6].

Notice that, in some cases, we would want the

constraints to evaluate to false (e.g., a transition in a

state machine that should not be taken). To cope with

these cases, we can simply negate the constraint and

find data for which the negated constraint evaluates to

true.

OCL is a constraint language that is more

expressive than programming languages such as C and

Java. Therefore, in this paper we extend the basic

definition of branch distance to cope with all the

features of the OCL 2.2 constraint language.

In this section, we give examples of how to

calculate the branch distance for various kinds of

expressions in OCL, including primitive data types

(such as Real and Integer) and collection-related types

(such as Set and Bag). In OCL, all data types are

subtypes of a super type OCLAny, which is categorized

into two subtypes: primitive types and collection types.

Primitive types are Real, Integer, String, and Boolean,

whereas collection types include Collection as super

type with subtypes Set, OrderedSet, Bag, and

Sequence. A constraint can be seen as an expression

involving one or more Boolean clauses connected with

operators such as and and or. The truth value of a

clause can depend on different types of properties

involving variables of different types, such as

equalities of integers and comparisons of strings. To

explain this, consider the UML class diagram in Figure

1 consisting of two classes: University and Student.

Figure 1. Example class diagram

Figure 2. Example constraints

context Student inv ageConstraint:
 self.age>15

context University inv numberOfStudents :
 self.student->size() > 0

Constraints on the class University are shown in Figure

2.

The first constraint states that the age of a Student

should be greater than 15. Based on the type of

attribute age of the class Student, which is Integer, the

comparison in the clause is determined to involve

integers. The second constraint states that the number

of students in the university should be greater than 0.

In this case, the size() operation is called on collection

student of the class Student, which is defined on

collections in OCL and returns an Integer denoting the

number of elements in a collection. Again, we have a

comparison of integers, even though a function such as

size() is called on a collection.

In the next section, we will discuss branch distance

functions based on different types of clauses in OCL.

A. Primitive types

A Boolean variable b is either true (d(b)=0), or false

(d(b)=k, where for example k=1). If the Boolean

variable is obtained from a function call, then in

general the branch distance would take one of only two

possible values (0 or k). However, when such calls

belong to the standard OCL operations (e.g., the

operation isEmpty() called on a collection), then in

some cases we can provide more fine grained

heuristics (we will specify which ones in more details

later in this section).

The operations defined in OCL to concatenate

Boolean clauses are or, xor, and, not, if then else, and

implies. Branch distance for operations on Boolean are

adopted from [24] and are shown in Table II.

Operations implies, xor, and if then else are syntax

sugars that usually do not appear in programming

languages, such as C and Java, and can be expressed as

combinations of and and or. The evaluation of d() on a

predicate composed by two or more clauses is done

recursively, as specified in Table I.

When a predicate or one of its parts is negated, then

the predicate is transformed such as to move the

negation inward to the basic clauses, e.g., not (A and

B) would be transformed into not A or not B.

For the data types defined for numerical data such

as Integer and Real, the relational operations defined

that return Booleans (and so can be used as clauses) are

<,>, <=,>=, and <>. For these operations, we adopted

the branch distance calculation from [24] as shown in

Table II.

In OCL, several other operations are defined on

Real and Integer such as +, -, *, /, abs(), div(), mod(),

max(), and min(). Since these operations are used as

part of the calculation of two compared numerical

values in a clause, there is no need to define a branch

distance for them. For example, considering a and b

are of type Integer and the constraint a+b*3<4, then

the operations + and * are used only to define that

constraint. The overall result of the expression a+b*3

will be an Integer and the clause will be considered as

a comparison of two values of Integer type.

For the String type, OCL defines several operations

such as =, +, size(), concat(), substring(), and

toInteger(). There are only three operations that return

a Boolean: equality operator =, inequality (<>) and

equalsIgnoreCase(). In these cases, instead of using k

if the comparisons are negative, we can return the

value of any string matching distance to evaluate how

close two strings are, as for example the edit distance

[8].

TABLE I. BRANCH DISTANCE CALCULATIONS FOR OCL’S

OPERATIONS FOR BOOLEAN

Boolean operations Distance function

Boolean if true then 0 otherwise k

A and B d(A)+d(B)

A or B min (d(A),d(b))

A implies B d(not A or B)

if A then B

else C

 d((A and B) or (not A and C))

A xor B d((A and not B) or (not A and B))

TABLE II. BRANCH DISTANCE CALCULATIONS OF OCL’S

RELATIONAL OPERATIONS FOR NUMERIC DATA

Relational

operations

Distance function

x=y if abs(x-y) = 0 then 0 otherwise abs(x-y)+k

x<>y if abs(x-y) <> 0 then 0 otherwise k

x<y if x-y < 0 then 0 otherwise (x-y)+k

x<=y if x-y <= 0 then 0 otherwise (x-y)+k

x>y if (y-x) < 0 then 0 otherwise (y-x)+k

x>=y if (y-x) <= 0 then 0 otherwise (y-x)+k

TABLE III. BRANCH DISTANCE CALCULATION FOR OPERATIONS CHECKING OBJECTS IN COLLECTIONS

Operation Distance function

includes (object:T): Boolean, where T is any OCL type

excludes (object:T): Boolean, where T is any OCL type

includesAll (c:Collection(T)): Boolean, where T is any OCL type

excludesAll(c:Collection(T)): Boolean, where T is any OCL type

isEmpty(): Boolean

notEmpty(): Boolean

Enumerations in OCL are treated in the same way

as enumerations in programming languages such as

Java. Because enumerations are objects with no

specific order relation, equality comparisons are treated

as basic Boolean expressions, whose branch distance is

either 0 or k.

B. Collection-Related Types

Collection types defined in OCL are Set,

OrderedSet, Bag, and Sequence. Details of these types

can be found in [1].

OCL defines several operations on collections. An

important point to note is that, if the return type of an

operation on a collection is Real or Integer and that

value is used in an expression, then the distance is

calculated in the same way as for primitive types as

defined in Section IV.A. An example is the size()

operation, which returns an Integer.

In this section, we discuss branch distance for

operations in OCL that are specific to collections, and

that usually are not common in programming

languages for expressing constraints/predicates and

hence are not discussed in the literature.

1) Equality of collections (=): In OCL constraints,

we may need to compare the equality of two

collections. To improve the search process by

providing a more fine-grained heuristic, we defined a

branch distance for comparing collections as shown in

Figure 4.

2) Operations checking existence of one or more

objects in a collection: OCL defines several operations

to check existence of one or more elements in a

collection such as includes() and excludes(), which

check whether an object exists in a collection or does

not exist in a collection, respectively. Whether a

collection is empty is checked with isEmpty() and

notEmpty(). Such operations can be further processed

for calculation of branch distance to improve the

search, as described in Table III.

3) Branch distance for iterators: OCL defines

several operations to iterate over collections. Below,

we will discuss branch distance for these iterators.

The forAll iterator operation is applied to an OCL

collection and takes as input a Boolean expression and

determines whether the expression holds for all

elements in the collection. For branch distance, we

calculate the distance of the Boolean expression in

forAll. Boolean expression on all elements in the

collection is conjuncted. To avoid a bias toward

reducing the size of the collection on which the

predicate is evaluated, we scale the resulting distance

by the number of elements in the collection. The

general branch distance function for forAll is shown in

Table IV. For the sake of clarity in the paper, we

assume that function exp(v1,v2, …vm) evaluates an

expression exp on a set of objects v1,v2, …vm in Table

IV. Self in the table refers to the collection on which an

operation is applied, at(i) is a standard OCL operation

that returns the i
th

 element of a collection, and size() is

another OCL operation that returns the number of

elements in a collection.

The exists iterator operation determines whether a

Boolean expression holds for at least one element of

the collection on which this operation is applied. The

distance is computed for each element of the collection

on which the Boolean expression is applied and the

results are disjuncted. The general distance form for

exists is shown in Table IV. In addition, we also

provide branch distance for isUnique() and one()

operations in the same table.

Select, reject, collect, and iterator operations select a

subset of elements in a collection. The select operation

selects all elements of a collection for which a Boolean

expression is true, whereas reject selects all elements

of a collection for which a Boolean expression is false.

In contrast, the collect iterator may return a subset of

elements, which do not belong to the collection on

which it is applied. Since all these iterators return a

collection and not a Boolean value, we do not need to

define branch distance for them, as discussed in

Section IV.A.

V. CASE STUDY: ROBUSTNESS TESTING OF VIDEO

CONFERENCE SYSTEM

This case study is part of a project aiming at

supporting automated, model-based robustness testing

of a core subsystem of a video conference system

(VCS) called Saturn [25] developed by Tandberg AS

(now part of Cisco Systems, Inc). Saturn is modeled as

TABLE IV. BRANCH DISTANCE FOR FORALL AND EXISTS

Operation Distance function

forAll(v1,v2, …vm|exp)

if self->size() = 0 then 0

otherwise

exists(v1,v2, …vm|exp)

isUnique(v1|exp)

one(v1|exp)

a UML class diagram meant to capture information

about APIs and system (state) variables, which are

required to generate executable test cases in our

application context. The standard behavior of the

system is modeled as a UML 2.0 state machine. In

addition, we used Aspect-oriented Modeling (AOM)

and more specifically the AspectSM profile [26] to

model robustness behavior separately as aspect state

machines. The robustness behavior is modeled based

on different functional and non-functional properties,

whose violations lead to erroneous states. Such

properties can be related to the system or its

environment such as the network and other systems

interacting with the system. A weaver later on weaves

robustness behavior into the standard behavior and

generates a standard UML 2.0 state machine. The

woven state machine is provided in [26]. This woven

state machine is used for test case generation. In this

current, simplified case study, the woven state machine

has 11 states and 93 transitions. Out of 93 transitions,

73 transitions model robustness behavior and 47 out of

73 are unique, all of them requiring test data that

satisfy the constraints to traverse them. All these 47

transitions have change events or triggers. A change

event is fired when a condition is met during the

operation of a system. An example of such change

event is shown in Figure 3. This change event is fired

during a videoconference when the synchronization

between audio and video passes the allowed threshold.

SynchronizationMismatch is a non-functional property

defined using the MARTE profile, which measures the

synchronization between audio and video in time.

 In our case study, we target test data generation for

model-based robustness testing of the VCS. Testing is

performed at the system level and we specifically

targeted robustness faults, for example related to faulty

situations in the network and other systems that

comprise the environment of the SUT. Test cases are

generated from the system state machines using our

tool TRUST [25]. To execute test cases, we need

appropriate data for the state variables of the system,

state variables of the environment (network properties

and in certain cases state variables of other VCS), and

input parameters that may be used in the following

UML state machine elements: (1) guard conditions on

transitions, (2) change events as triggers on transitions,

and (3) inputs to time events. We have successfully

used the TRUST tool to generate test cases using

different coverage criteria on UML state machines,

such as all transitions, all round trip, modified round

trip strategy [25].

A. Empirical Evaluation

This section discusses the experiment design,

execution, and analysis of evaluation of the proposed

OCL test data generator.

1) Experiment Design: We designed our

experiment using the guidelines proposed in [7, 28].

The objective of our experiment is to assess the

efficiency of search algorithms such as GAs to

generate test data by solving OCL constraints. In our

experiments, we compared three search techniques:

GA, (1+1) EA, and RS. GA was selected since it is the

most commonly used search algorithm in search-based

software engineering [7]. (1+1) EA is simpler than

GAs, but in the previous work in software testing we

found that it can be more effective in some cases (e.g.,

see [9]). We used RS as the comparison baseline to

assess the difficulty of the addressed problem [7].

In this paper, we want to answer the following

research questions.

RQ1: Are search-based techniques effective and

efficient at solving OCL constraints in the models of

industrial systems?

RQ2: Among the considered search algorithms,

which one performs best in solving OCL constraints?

2) Experiment Execution: We ran experiments for

47 OCL predicates as we discussed in Section 0. The

number of clauses in each predicate varies from one to

eight and the median value is six. Each algorithm was

run 100 times to account for the random variation

inherent to randomized algorithms.

A solution is represented as an array of variables,

the same that appear in the OCL constraint we want to

solve. For GA, we set the population size to 100 and

the crossover rate to 0.75, with a 1.5 bias for rank

selection. We use a standard one-point crossover, and

mutation of a variable is done with the standard

probability 1/n, where n is the number of variables.

if not (A.oclIsKindOf(B))

 d(A=B) := 1

otherwise if A->size() <> B->size()
 d(A=B) := 0.5 + 0.5*n(d (A->size()=B->size()))

otherwise

d(A=B) := 0.5 * sum(n(d(pair)))/A->size()
where, d(pair) = distance between each paired element in the

collection, e.g., d(A.at(i)=B.at(i)) and n is a normalizing

function [27], and it is defined as n(x)=x/(x+1). Suppose A and
B are two collections in OCL.

Figure 4. Branch distance equality of collections

context Saturn inv synchronozationConstraint:

 self.media.synchronizationMismatch.value > self.media.synchronizationMismatchThreshold.value)

Figure 3. A constraint checking synchronization of audio and video in a videoconference

We ran each algorithm up to 2000 fitness

evaluations on each problem and collected data on

whether an algorithm found the solution or not. On our

machine (Intel Core Duo CPU 2.20 GHz with 4 GB of

RAM, running Microsoft Windows 7 operating

system), running 2000 fitness evaluations takes on

average 3.8 minutes for all algorithms. Instead of

putting a limit to the number of fitness evaluations, a

more practical approach would be to run as many

iterations as possible, but stopping once a predefined

time threshold is reached (e.g., 10 minutes) if the

constraint has not been solved yet. The choice of the

threshold would be driven by the testing budget.

However, though useful in practice, using a time

threshold would make it significantly more difficult

and less reliable to compare different search algorithms

(e.g., accurately monitoring the passing of time, side

effects of other processes running at same time,

inefficiencies in implementation details).

To compare the algorithms, we calculated their

success rate, which is defined as the number of times

an algorithm was successful in finding optimal

solutions out of the total number of runs.

3) Results and Analysis: Figure 5 shows a box plot

of the success rate of the 47 problems for (1+1) EA,

GA, and RS. For each search technique, the box-plot is

based on 47 success rates, one for each constraint. The

results show that (1+1) EA outperformed both RS and

GA, whereas GA outperformed RS. We can observe

that, with an upper limit of 2000 iterations, (1+1) EA

achieves a median success rate of 80% but GA does

not exceed a median roughly 60%. We can also see

that all success rates for (1+1) EA are above 50% and

most of them are close to 100%. Constraints with the

lowest success rates are seven and eight clauses long.

Even taking the lowest success rates for the most

difficult constraints (50%), this would entail that with r

runs of (1+1) EA, we would achieve a success rate of 1

- (1 - 0.5)
r
. For example, with r = 7, we would obtain a

success rate above 99%. This entails a computation

time of approximately 3.8*7=27 minutes. Given that

we use a slow prototype (EyeOCL) for OCL

expression analysis and that we could parallelize the

search, our results suggest that our approach is

effective, efficient, and therefore practical, even for

difficult constraints (RQ1).
To check the statistical significance of the results,

we performed Fisher’s exact test between each pair of

algorithms based on their success rates for the 47

constraints. Due to space limitations, we do not present

p-values for each problem and each pair of algorithms.

In summary, we observe that for 105 times out of 141

(47*3, where 3 represent the number of algorithm

pairs), results were significant at the 0.05 level. We

also carried out a paired Mann-Whitney U-test (paired

per constraint) on the distributions of the success rates

for the three algorithms. In all the three distribution

comparisons, p-values were very close to 0, and hence

showing a strong statistical difference among the three

algorithms when applied on all the 47 constraints

(although on some constraints there is no statistical

difference, as the 141 Fisher’s exact tests show).

In addition to statistical significance, we also

assessed the magnitude of the improvement by

calculating the effect size in a standardized way. We

used odds ratio [28] for this purpose, as the results of

our experiments are dichotomous. Figure 6 shows box

plots of odds ratio for pairs of algorithms for the 47

constraints. Between RS and (1+1) EA (the first

column in Figure 6), the value of odds ratio is less than

one, thus implying that (1+1) EA has more chances of

success than RS. The odds ratio between RS and GA is

also similar. Therefore, there is strong evidence to

claim that (1+1) EA is significantly more successful

than the other analyzed algorithms since, in most of the

cases, the odds ratios comparing GA and RS with

(1+1) EA (first and third column in Figure 6) show

values not only lower than one, but also very close to

zero (RQ2).
To check the complexity of the problems, we repeat

the experiment on the negation of each of the 47

Figure 5. Success rates for various algorithms

Figure 6. Odds ratio between pairs of algorithms

predicates. All algorithms managed to find solutions

for all these problems very quickly. Most of the time

and for most of the problems, each algorithm managed

to find solutions in a single iteration. This result

confirmed that the actual problems we targeted with

search were not easy to solve.

In practice, given a time budget T, we recommend

running (1+1) EA for as many iterations as possible.

An alternative is to run the algorithms several times

(e.g., r, so each run with budget T/r) but this is

expected to be less effective as no information is

reused between runs. But, in our experiments, this

latter technique is already extremely effective (99%

success rate with seven runs in the worst case).

B. Comparision with UMLtoCSP

UMLtoCSP [19] is the most widely used and

referenced OCL constraint solver in the literature. To

check the performance of UMLtoCSP to solve

complex constraints such as the ones in our current

industrial case study, we conducted an experiment. We

selected the 10 most complex constraints (based on the

number of clauses in a constraint) from our industrial

application, which comprises constraints ranging from

six to eight clauses (we did not analyzed all the 47

constraints because, as we will show, these

experiments took substantial computational time). An

example of such constraint, modeling a change event

on a transition of Saturn’s state machine, is shown in

Figure 7. This change event is fired when Saturn is

successful in recovering the synchronization between

audio and video. Since UMLtoCSP does not support

enumerations, we converted each enumeration into an

Integer and limited its bound to the number of literals

in the enumeration. We also used the MARTE profile

to model different non-functional properties, and since

UMLtoCSP does not support UML profiles, we

explicitly modeled the used subset of MARTE as part

of our models. In addition, UMLtoCSP does not allow

writing constraints on inherited attributes of a class, so

we modified our models and modeled inherited

attributes directly in the classes. We set the range of

Integer attributes from 1 to 100.

We ran the experiment on the same machine as we

used in the experiments reported in the previous

section. Though we let UMLtoCSP address each of the

selected constraints for 10 hours each, it was not

successful in finding any valid solution. A plausible

explanation is that UMLtoCSP is negatively affected

by the state explosion problem, a common problem in

real-world industrial applications such as the one from

Tandberg/Cisco used in this paper. In contrast, even in

the worst case, our constraint solver managed to solve

each constraint within at most 27 minutes, as we have

reported in the previous section.

VI. TOOL SUPPORT

We developed a tool in Java that interacts with an

existing library, an OCL evaluator called EyeOCL

[29]. EyeOCL is a Java component that provides APIs

to parse and evaluate an OCL expression based on an

object model. Our tool implements the calculation of

branch distance as discussed in Section IV for various

expressions in OCL. To calculate branch distance for

an OCL expression, we send this expression for

parsing to EyeOCL and obtain a parse tree of the

expression. We manipulate the parse tree and call

EyeOCL with the current set of values for variables in

the expression and calculate the branch distance. The

search algorithms employed in this paper were

implemented in Java as well.

VII. THREATS TO VALIDITY

To reduce construct validity threats, we chose the

measure success rate, which is comparable across all

three algorithms ((1+1) EA, GA and RS) that we used.

Furthermore, we used the same stopping criterion for

all algorithms, i.e., number of fitness evaluations. This

criterion is comparable across all the algorithms that

we studied because each iteration requires updating the

object diagram in EyeOCL and evaluating a query on

it. This time is same for all the algorithms, and it is

rather expensive (approximately, 0.114 second per

iteration).

The most probable conclusion validity threat in

experiments involving randomized algorithms is due to

random variation. To address it, we repeated

experiments 100 times to reduce the possibility that the

results were obtained by chance. Furthermore, we

perform Fisher exact test to compare proportions to

determine statistical significance of results. We chose

Fisher’s exact test because it is appropriate for

dichotomous data where proportions must be

compared, thus matching our case [28]. To determine

practical significance of results, we measure the effect

size using the odds ratio of success rates across search

techniques.

A possible threat to internal validity is that we have

experimented with only one configuration setting for

the GA parameters. However, these settings are in line

with common guidelines in the literature and our

previous experience on testing problems.

In the empirical comparisons with UMLtoCSP,

there is the threat that we might have wrongly

configured it. To reduce the probability of such an

event, we contacted the authors of UMLtoCSP who

were very helpful in ensuring its proper use.

We ran our experiments on an industrial case study

to generate test data for 47 different OCL constraints,

ranging from simpler constraints having just one clause

to complex constraints having eight clauses. Although

the empirical analysis is based on a real industrial

system and not on small artificial problems (as most

work in the literature [11], [13], and [16]), our results

might not generalize to other case studies. However,

such threat to external validity is common to all

empirical studies.

From our analysis of UMLtoCSP, we cannot

generalize our results to traditional constraint solvers in

general when applied to solve OCL constraints.

However, empirical comparisons with other constraints

solvers were not possible because, to the best of our

knowledge, UMLtoCSP is not only the most

referenced OCL solver but also the only one that is

publically available.

VIII. CONCLUSION

In this paper, we presented a search-based

constraint solver for the Object Constraint Language

(OCL). The goal is to achieve a practical, scalable

solution to support test data generation for Model-

based Testing (MBT). Existing OCL constraint solvers

have one or more of the following problems that make

them difficult to use in industrial applications: (1) they

support only a subset of OCL; (2) they translate OCL

into formalisms such as first order logic, temporal

logic, or Alloy, and thus are relying on non-standard

technologies and result into combinatorial explosion

problems. These problems limit their practical adoption

in industrial settings.

To overcome the abovementioned problems, we

defined a set of heuristics based on OCL constraints to

guide search-based algorithms (genetic algorithms,

(1+1) EA) and implemented them in our search-based

OCL constraint solver. More specifically, we defined

branch distance functions for various types of

expressions in OCL to guide search algorithms. We

demonstrated the effectiveness and efficiency of our

search-based constraint solver to generate test data in

the context of the model-based, robustness testing of an

industrial case study of a video conferencing system.

Even for the most difficult constraints, with research

prototypes and no parallel computations, we obtain test

data within 27 minutes in the worst case and in less

than 4 minutes on average.

As a comparison, we ran the 10 most complex

constraints on one well-known, downloadable OCL

solver (UMLtoCSP) and the results showed that, even

after running it for 10 hours, no solutions could be

found. Similar to all existing OCL solvers, because it

could not handle all OCL constructs, we had to

transform our constraints to satisfy UMLtoCSP

requirements.

We also conducted an empirical evaluation in which

we compared three search algorithms using two

statistical tests: Fisher’s exact test between each pair of

algorithms to test their differences in success rates for

each constraints and a paired Mann-Whitney U-test on

the distributions of the success rates (paired per

constraint). Results showed that (1+1) EA was

significantly better than GA, which itself were

significantly better than random search. Notice that in

both empirical evaluations, the execution times were

obtained on a regular PC.

Future work will consider hybrid approaches, in

which traditional constraint solver techniques will be

integrated with search algorithms, with the aim to

overcome the current limitations that both approaches

have and exploit the best of both worlds.

IX. ACKNOWLEDGEMENT

The work described in this paper was supported by

the Norwegian Research Council. This paper was

produced as part of the ITEA-2 project called VERDE.

We thank Marius Christian Liaaen (Tandberg AS, part

of Cisco Systems, Inc) for providing us the case study.

X. REFERENCES

[1] Object Constraint Language Specification,

Version 2.2, Object Management Group (OMG),

http://www.omg.org/spec/OCL/2.2/, 2010

[2] Meta Object Facility (MOF),

http://www.omg.org/spec/MOF/2.0/, 2006

[3] L. v. Aertryck and T. Jensen, "UML-Casting:

Test synthesis from UML models using constraint

resolution," in Approches Formelles dans l'Assistance

au Développement de Logiciels (AFADL'2003), 2003.

[4] M. Benattou, J. Bruel, and N. Hameurlain,

"Generating test data from OCL specification,"

Citeseer, 2002.

context Saturn inv synchronizationConstraint:

 (self.systemUnit.NumberOfActiveCalls > 1 and self.systemUnit.NumberOfActiveCalls <= self.systemUnit.MaximumNumberOfActiveCalls) and

 self.media.synchronizationMismatch.unit = TimeUnitKind::s and (self.media.synchronizationMismatch.value >= 0 and

 self.media.synchronizationMismatch.value <= self.media.synchronizationMismatchThreshold.value) and self.conference.PresentationMode = Mode::Off and

 self.conference.call->select(call | call.incomingPresentationChannel.Protocol <> VideoProtocol::Off)->size()=2

 and self.conference.call->select(call | call.outgoingPresentationChannel.Protocol <> VideoProtocol::Off)->size()=2

 Figure 7. A change event checking which is fired when synchronization between audio and video is within threshold

http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/MOF/2.0/

[5] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y.

Hong, "Test case automate generation from uml

sequence diagram and ocl expression," in International

Conference on cimputational Intelligence and Security,

2007, pp. 1048-1052.

[6] M. Harman, S. A.Mansouri, and Y. Zhang,

"Search based software engineering: A comprehensive

analysis and review of trends techniques and

applications," King’s College,Technical Report TR-09-

032009.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K.

Panesar-Walawege, "A Systematic Review of the

Application and Empirical Investigation of Search-

Based Test Case Generation," IEEE Transactions on

Software Engineering, vol. 99, 2009.

[8] M. Alshraideh and L. Bottaci, "Search-based

software test data generation for string data using

program-specific search operators: Research Articles,"

Softw. Test. Verif. Reliab., vol. 16, pp. 175-203, 2006.

[9] A. Andrea, "Longer is Better: On the Role of

Test Sequence Length in Software Testing,"

International Conference on Software Testing,

Verification, and Validation, 2010, pp. 469-478.

[10] B. Bordbar and K. Anastasakis, "UML2Alloy:

A tool for lightweight modelling of Discrete Event

Systems," in IADIS International Conference in

Applied Computing, 2005.

[11] D. Distefano, J.-P. Katoen, and A. Rensink,

"Towards model checking OCL," in ECOOP-

Workshop on Defining Precise Semantics for UML,

2000.

[12] M. Clavel and M. A. G. d. Dios, "Checking

unsatisfiability for OCL constraints," in In the

proceedings of the 9th OCL 2009 Workshop at the

UML/MoDELS Conferences, 2009.

[13] M. Kyas, H. Fecher, F. S. d. Boer, J. Jacob, J.

Hooman, M. v. d. Zwaag, T. Arons, and H. Kugler,

"Formalizing UML Models and OCL Constraints in

PVS," Electron. Notes Theor. Comput. Sci., vol. 115,

pp. 39-47, 2005.

[14] J. Winkelmann, G. Taentzer, K. Ehrig, and J.

M. ster, "Translation of Restricted OCL Constraints

into Graph Constraints for Generating Meta Model

Instances by Graph Grammars," Electron. Notes Theor.

Comput. Sci., vol. 211, pp. 159-170, 2008.

[15] D. Jackson, I. Schechter, and H. Shlyahter,

"Alcoa: the alloy constraint analyzer," in Proceedings

of the 22nd international conference on Software

engineering Limerick, Ireland: ACM, 2000.

[16] M. Krieger and A. Knapp, "Executing

Underspecified OCL Operation Contracts with a SAT

Solver," in 8th International Workshop on OCL

Concepts and Tools. vol. 15: ECEASST, 2008.

[17] M. P. Krieger, A. Knapp, and B. Wolff,

"Automatic and Efficient Simulation of Operation

Contracts," in 9th International Conference on

Generative Programming and Component

Engineering, 2010.

[18] B. K. Aichernig and P. A. P. Salas, "Test Case

Generation by OCL Mutation and Constraint Solving,"

in Proceedings of the Fifth International Conference

on Quality Software: IEEE Computer Society, 2005.

[19] J. Cabot, R. Claris, and D. Riera,

"Verification of UML/OCL Class Diagrams using

Constraint Programming," in Proceedings of the 2008

IEEE International Conference on Software Testing

Verification and Validation Workshop: IEEE

Computer Society, 2008.

[20] K. Sen, D. Marinov, and G. Agha, "CUTE: a

concolic unit testing engine for C," SIGSOFT Softw.

Eng. Notes, vol. 30, pp. 263-272, 2005.

[21] K. Lakhotia, P. McMinn, and M. Harman,

"An empirical investigation into branch coverage for C

programs using CUTE and AUSTIN," Journal of

Systems and Software, vol. 83, pp. 2379-2391.

[22] C. Doungsa-ard, K. Dahal, A. Hossain, and T.

Suwannasart, "GA-based Automatic Test Data

Generation for UML State Diagrams with Parallel

Paths," Advanced Design and Manufacture to Gain a

Competitive Edge, pp. 147-156, 2008.

[23] R. Lefticaru and F. Ipate, "Functional Search-

based Testing from State Machines," in Proceedings of

the 2008 International Conference on Software

Testing, Verification, and Validation: IEEE Computer

Society, 2008.

[24] P. McMinn, "Search-based software test data

generation: a survey: Research Articles," Softw. Test.

Verif. Reliab., vol. 14, pp. 105-156, 2004.

[25] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm,

and L. C. Briand, "Model Transformations as a

Strategy to Automate Model-Based Testing - A Tool

and Industrial Case Studies," Simula Research

Laboratory, Technical Report (2010-01)2010.

[26] S. Ali, L. C. Briand, and H. Hemmati,

"Modeling Robustness Behavior Using Aspect-

Oriented Modeling to Support Robustness Testing of

Industrial Systems," Simula Research Laboratory,

Technical Report (2010-03)2010.

[27] A. Arcuri, "It Does Matter How You

Normalise the Branch Distance in Search Based

Software Testing," in Proceedings of the 2010 Third

International Conference on Software Testing,

Verification and Validation: IEEE Computer Society.

[28] A. Arcuri and L. Briand., "A Practical Guide

for Using Statistical Tests to Assess Randomized

Algorithms in Software Engineering," in International

Conference on Software Engineering (ICSE), 2011.

[29] M. Egea, EyeOCL Software,

http://maude.sip.ucm.es/eos/, 2010

http://maude.sip.ucm.es/eos/

