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Abstract—Model-based testing (MBT) aims at automated, 

scalable, and systematic testing solutions for complex 

industrial software systems. To increase chances of 

adoption in industrial contexts, software systems should 

be modeled using well-established standards such as the 

Unified Modeling Language (UML) and Object 

Constraint Language (OCL). Given that test data 

generation is one of the major challenges to automate 

MBT, this is the topic of this paper with a specific focus 

on test data generation from OCL constraints. Though 

search-based software testing (SBST) has been applied to 

test data generation for white-box testing (e.g., branch 

coverage), its application to the MBT of industrial 

software systems has been limited. In this paper, we 

propose a set of search heuristics based on OCL 

constraints to guide test data generation and automate 

MBT in industrial applications. These heuristics are used 

to develop an OCL solver exclusively based on search, in 

this particular case genetic algorithm and (1+1) EA. 

Empirical analyses to evaluate the feasibility of our 

approach are carried out on one industrial system. 

Keywords-UML; OCL; Search-based testing; Test data; 

Empirical evaluation 

I. INTRODUCTION 

Model-based testing (MBT) has recently received 

increasing attention in both industry and academia. 

MBT promises systematic, automated, and thorough 

testing, which would likely not be possible without 

models. However, the full automation of MBT, which 

is a requirement for scaling up to large systems, 

requires solving many problems, including preparing 

models for testing (e.g., flattening state machines), 

defining appropriate test strategies and coverage 

criteria, and generating test data to execute test cases. 

Furthermore, in order to increase chances of adoption, 

using MBT for industrial applications requires using 

well-established standards, such as the Unified 

Modeling Language (UML) and its associated 

language to write constraints: the Object Constraint 

Language (OCL) [1].  

OCL [1] is a standard language that is widely 

accepted for writing constraints on UML models. OCL 

is based on first order logic and is a highly expressive 

language. The language allows modelers to write 

constraints at various levels of abstraction and for 

various types of models. It can be used to write class 

and state invariants, guards in state machines, 

constraints in sequence diagrams, and pre and post 

condition of operations. A basic subset of the language 

has been defined that can be used with meta-models 

defined in Meta Object Facility (MOF) [2] (which is a 

standard defined by Object Management Group 

(OMG) for defining meta-models). This subset of OCL 

has been largely used in the definition of UML for 

constraining various elements of the language. 

Moreover, the language is also used in writing 

constraints while defining UML profiles, which is a 

standard way of extending UML for various domains 

using pre-defined extension mechanisms. 

Due to the ability of OCL to specify constraints for 

various purposes during modeling, for example when 

defining guard conditions or state invariants in state 

machines, such constraints play a significant role when 

testing is driven by models. For example, in state-

based testing, if the aim of a test case is to execute a 

guarded transition (where the guard is written in OCL 

based on input values of the trigger) to achieve full 

transition coverage, then it is essential to provide input 

values to the event that triggers the transition such that 

the values satisfy the guard. Another example can be to 

generate valid parameter values based on the pre-

condition of an operation. 

Test data generation is an important component of 

MBT automation. For UML models, with constraints 

in OCL, test data generation is a non-trivial problem. A 

few approaches in the literature exist that address this 

issue. But most of them, either target only a small 

subset of OCL [3, 4], are not scalable, or lack proper 

tool support [5]. This is a major limitation when it 

comes to the industrial application of MBT approaches 

that use OCL to specify constraints on models. 

This paper provides a contribution by devising 

novel heuristics for the application of search-based 

techniques, such as Genetic Algorithms (GAs) and 

(1+1) Evolutionary Algorithm (EA), to solving OCL 

constraints (covering the entire OCL 2.2 semantics [1]) 

in order to generate test data. A search-based OCL 



constraint solver is implemented and evaluated on the 

first reported, industrial case study on this topic. 

The rest of the paper is organized as follows: 

Section II discusses the background and Section III 

discusses related work. In Section IV, we present the 

definition of distance function for various OCL 

constructs. Section V discusses the case studies and 

analysis of results of the application of the approach, 

whereas Section VI discusses the tool support and 

Section VII addresses the threats to validity of our 

empirical study. Finally, Section VIII concludes the 

paper. 

II. BACKGROUND 

Several software engineering problems can be 

reformulated as a search problem, such as test data 

generation [6]. An exhaustive evaluation of the entire 

search space (i.e., the domain of all possible 

combinations of problem variables) is usually not 

feasible. There is a need for techniques that are able to 

produce “good’’ solutions in reasonable time by 

evaluating only a tiny fraction of the search space. 

Search algorithms can be used to address this type of 

problem. Several successful results by using search 

algorithms are reported in the literature for many types 

of software engineering problems [7-9].  

To use a search algorithm, a fitness function needs 

to be defined. The fitness function should be able to 

evaluate the quality of a candidate solution (i.e., an 

element in the search space). The fitness function is 

problem dependent, and proper care needs to be taken 

for developing adequate fitness functions. The fitness 

function will be used to guide the search algorithms 

toward fitter solutions. Eventually, given enough time, 

a search algorithm will find an optimal solution. 

There are several types of search algorithms. 

Genetic Algorithms (GAs) are the most well-known 

[7], and they are inspired by the Darwinian evolution 

theory. A population of individuals (i.e., candidate 

solutions) is evolved through a series of generations, 

where reproducing individuals evolve through 

crossover and mutation operators. (1+1) Evolutionary 

Algorithm (EA) is simpler than GAs, in which only a 

single individual is evolved with mutation. To verify 

that search algorithms are actually necessary because 

they address a difficult problem, it is a common 

practice to use Random Search (RS) as baseline [7].      

III. RELATED WORK 

There are a number of approaches that deal with the 

evaluation of OCL constraints. The basic aim of most 

of these approaches is to verify whether the constraints 

can be satisfied. Though most of the approaches do not 

generate test data, they are still related to our work 

since they require the generation of values for 

validating the constraints. These approaches can be 

adapted for generating test data. In Section A, we 

discuss the OCL-based constraint solving approaches 

in the literature. In Section B we discuss the 

approaches that use search-based heuristics for testing. 

A. OCL-based Constraint Solvers 

A number of approaches use constraint solvers for 

analyzing OCL constraints for various purposes. These 

approaches usually translate constraints and models 

into a formalism (e.g., Alloy [10], temporal logic 

BOTL [11], FOL [12] , Prototype Verification System 

(PVS) [13], graph constraints [14]), which can then be 

analyzed by a constraint analyzer (e.g., Alloy 

constraint analyzer [15], model checker [11], 

Satisfiability Modulo Theories (SMT) Solver [12], 

theorem prover [12], [13]). Satisfiability Problem 

(SAT) solvers have also been used for the animation of 

OCL operation contracts (e.g., [16], [17]).  

Some approaches are reported in the literature that 

generates test cases based on OCL constraints. Most of 

these approaches only handle a small subset of OCL 

and UML models and are based on formal constraint 

solving techniques, such as SAT solving (e.g., [3]), 

constraint satisfaction problem (CSP) (e.g., [18], [19]) 

and partition analysis (e.g., [5], [4]).  

The work presented in [19] is one of the most 

sophisticated approaches in the literature. However, its 

focus is on verification of correctness properties, but to 

achieve this, it also generates an instantiation of the 

model. The major limitation of that approach is that the 

search space is bounded and, as the bounds are raised, 

the CSP faces a combinatorial explosion increase (as 

discussed in [19]). The task of determining the optimal 

bounds for verification is left to the user, which is not 

simple and requires repeated interaction from the user. 

Models of industrial applications can have hundreds of 

attributes and manually finding bounds for individual 

attributes is often impractical. We present the results of 

an experiment that we conducted to compare our 

approach with this approach in Section V.B.       

Most of the above approaches are different from our 

work, since we want to generate test data based on 

OCL constraints provided by modelers on UML state 

and class diagrams. These diagrams may be developed 

for environment models or system models and the 

modeler should be allowed to use the complete set of 

standard OCL 2.2 notations. We want to provide inputs 

for which the constraints are satisfied, and not just 

verify them. We also want a tool that can be easily 

integrated with different state-based testing approaches 

and manual intervention should not be required for 

every run.  

Existing approaches for OCL constraint solving do 

not fully fit our needs. Almost all of the existing works 



only support a small subset of OCL. Most of the 

approaches are only limited to simple numerical 

expressions and do not handle collections (used widely 

to specify expressions that navigate over associations). 

This is generally due to the high expressiveness of 

OCL that makes the definitions of constraints easier, 

but their analysis more difficult. Conversion of OCL to 

a SAT formula or a CSP instance can easily result in 

combinatorial explosion as the complexity of the 

model and constraints increase (as discussed in [19]). 

For industrial scale systems, as in our case, this is a 

major limitation, since the models and constraints are 

generally quite complex. Most of the discussed 

approaches either do not support the OCL constructs 

present in the constraints that we have in our industrial 

case study or are not efficient to solve them (see 

Section V.B). Hence, existing techniques based on 

conversion to lower-level languages seem impractical 

in the context of large scale, real-world systems.  

Instead of using search algorithms, another possible 

approach to cope with the combinatorial explosion 

faced in solving OCL constraints could be to use 

hybrid approaches that combine formal techniques 

(e.g., constraint solvers) with random testing (e.g. 

[20]). However, we are aware of no work on this topic 

for OCL and, even for common white-box testing 

strategies, performance comparisons of hybrid 

techniques with search algorithms are rare [21].   

B. Search-based Heuristics for Model Based Testing 

The application of search-based heuristics for MBT 

has received significant attention recently (e.g., [22], 

[23]). The idea of these techniques is to apply the 

heuristics to guide the search for test data that should 

satisfy different types of coverage criteria on state 

machines, such as state coverage. Achieving such 

coverage criteria is far from trivial since guards on 

transitions can be arbitrarily complex. Finding the right 

inputs to trigger these transitions is not simple. 

Heuristics have been defined based on common 

practices in white-box, search-based testing, such as 

the use of branch distance and approach level [24]. 

Our goal is to tailor this approach to OCL constraint 

solving for test data generation.  

IV. DEFINITION OF THE FITNESS FUNCTION FOR OCL 

To guide the search for test data that satisfy OCL 

constraints, it is necessary to define a set of heuristics.  

A heuristic would tell ‘how far’ an input data is from 

satisfying the constraint. For example, let us say we 

want to satisfy the constraint x=0, and suppose we 

have two data inputs: x1:=5 and x2:=1000. Both 

inputs x1 and x2 do not satisfy x=0, but x1 is 

heuristically closer to satisfy x=0 than x2. A search 

algorithm would use such a heuristic as a fitness 

function, to reward input data that are closer to satisfy 

the target constraint.   

In this paper, to generate test data to solve OCL 

constraints, we use a fitness function that is adapted 

from work done for code coverage (e.g., for branch 

coverage of code written in C [24]). In particular, we 

use the so called branch distance (a function d()), as 

defined in [24]. The function d() returns 0 if the 

constraint is solved, otherwise a positive value that 

heuristically estimates how far the constraint was from 

being evaluated as true. As for any heuristic, there is 

no guarantee that an optimal solution will be found in 

reasonable time, but nevertheless many successful 

results are reported in the literature for various 

software engineering problems [6].   

Notice that, in some cases, we would want the 

constraints to evaluate to false (e.g., a transition in a 

state machine that should not be taken). To cope with 

these cases, we can simply negate the constraint and 

find data for which the negated constraint evaluates to 

true. 

OCL is a constraint language that is more 

expressive than programming languages such as C and 

Java. Therefore, in this paper we extend the basic 

definition of branch distance to cope with all the 

features of the OCL 2.2 constraint language.  

In this section, we give examples of how to 

calculate the branch distance for various kinds of 

expressions in OCL, including primitive data types 

(such as Real and Integer) and collection-related types 

(such as Set and Bag). In OCL, all data types are 

subtypes of a super type OCLAny, which is categorized 

into two subtypes: primitive types and collection types. 

Primitive types are Real, Integer, String, and Boolean, 

whereas collection types include Collection as super 

type with subtypes Set, OrderedSet, Bag, and 

Sequence. A constraint can be seen as an expression 

involving one or more Boolean clauses connected with 

operators such as and and or. The truth value of a 

clause can depend on different types of properties 

involving variables of different types, such as 

equalities of integers and comparisons of strings. To 

explain this, consider the UML class diagram in Figure 

1 consisting of two classes: University and Student. 

 
Figure 1. Example class diagram 

 

 

Figure 2. Example constraints  

context Student inv ageConstraint:  
 self.age>15 

 

context University inv numberOfStudents : 
 self.student->size() > 0  

 



Constraints on the class University are shown in Figure 

2. 

The first constraint states that the age of a Student 

should be greater than 15. Based on the type of 

attribute age of the class Student, which is Integer, the 

comparison in the clause is determined to involve 

integers. The second constraint states that the number 

of students in the university should be greater than 0. 

In this case, the size() operation is called on collection 

student of the class Student, which is defined on 

collections in OCL and returns an Integer denoting the 

number of elements in a collection. Again, we have a 

comparison of integers, even though a function such as 

size() is called on a collection.   

In the next section, we will discuss branch distance 

functions based on different types of clauses in OCL. 

A. Primitive types 

A Boolean variable b is either true (d(b)=0), or false 

(d(b)=k, where for example k=1). If the Boolean 

variable is obtained from a function call, then in 

general the branch distance would take one of only two 

possible values (0 or k).  However, when such calls 

belong to the standard OCL operations (e.g., the 

operation isEmpty() called on a collection), then in 

some cases we can provide more fine grained 

heuristics (we will specify which ones in more details 

later in this section). 

The operations defined in OCL to concatenate 

Boolean clauses are or, xor, and, not, if then else, and 

implies. Branch distance for operations on Boolean are 

adopted from [24] and are shown in Table II. 

Operations implies, xor, and if then else are syntax 

sugars that usually do not appear in programming 

languages, such as C and Java, and can be expressed as 

combinations of and and or. The evaluation of d() on a 

predicate composed by two or more clauses is done 

recursively, as specified in Table I.  

When a predicate or one of its parts is negated, then 

the predicate is transformed such as to move the 

negation inward to the basic clauses, e.g., not (A and 

B) would be transformed into not A or not B. 

For the data types defined for numerical data such 

as Integer and Real, the relational operations defined 

that return Booleans (and so can be used as clauses) are 

<,>, <=,>=, and <>.  For these operations, we adopted 

the branch distance calculation from [24] as shown in 

Table II.  

In OCL, several other operations are defined on 

Real and Integer such as +, -, *, /, abs(), div(), mod(), 

max(), and min(). Since these operations are used as 

part of the calculation of two compared numerical 

values in a clause, there is no need to define a branch 

distance for them. For example, considering a and b 

are of type Integer and the constraint a+b*3<4, then 

the operations + and * are used only to define that 

constraint. The overall result of the expression a+b*3 

will be an Integer and the clause will be considered as 

a comparison of two values of Integer type.   

For the String type, OCL defines several operations 

such as =, +, size(), concat(), substring(), and 

toInteger(). There are only three operations that return 

a Boolean: equality operator =, inequality (<>) and 

equalsIgnoreCase(). In these cases, instead of using k 

if the comparisons are negative, we can return the 

value of any string matching distance to evaluate how 

close two strings are, as for example the edit distance 

[8].  

TABLE I. BRANCH DISTANCE CALCULATIONS FOR OCL’S 

OPERATIONS FOR BOOLEAN 

Boolean operations Distance function 

Boolean  if true then 0 otherwise k  

A and B  d(A)+d(B) 

A or B  min (d(A),d(b)) 

A implies B  d(not A or B) 

if A then B 

else C 

 d((A and B) or (not A and C)) 

A xor B  d((A and not B) or (not A and B))  

 

TABLE II. BRANCH DISTANCE CALCULATIONS OF OCL’S 

RELATIONAL OPERATIONS FOR NUMERIC DATA 

Relational 

operations 

Distance function 

x=y if abs(x-y) = 0 then 0 otherwise abs(x-y)+k  

x<>y if abs(x-y) <> 0 then 0 otherwise k 

x<y if x-y < 0 then 0 otherwise (x-y)+k 

x<=y if x-y <= 0 then 0 otherwise (x-y)+k 

x>y if (y-x) < 0 then 0 otherwise (y-x)+k 

x>=y if (y-x) <= 0 then 0 otherwise (y-x)+k 

TABLE III. BRANCH DISTANCE CALCULATION FOR OPERATIONS CHECKING OBJECTS IN COLLECTIONS 

Operation Distance function 

includes (object:T): Boolean, where T is any OCL type                                            

excludes (object:T): Boolean, where T is any OCL type                       
           
     

includesAll (c:Collection(T)): Boolean, where T is any OCL type                                         
           
       

excludesAll(c:Collection(T)): Boolean, where T is any OCL type                         
        
   

           
      

isEmpty(): Boolean                    

notEmpty():  Boolean                    



Enumerations in OCL are treated in the same way 

as enumerations in programming languages such as 

Java. Because enumerations are objects with no 

specific order relation, equality comparisons are treated 

as basic Boolean expressions, whose branch distance is 

either 0 or k.  

B. Collection-Related Types 

Collection types defined in OCL are Set, 

OrderedSet, Bag, and Sequence. Details of these types 

can be found in [1].  

OCL defines several operations on collections. An 

important point to note is that, if the return type of an 

operation on a collection is Real or Integer and that 

value is used in an expression, then the distance is 

calculated in the same way as for primitive types as 

defined in Section IV.A. An example is the size() 

operation, which returns an Integer.  

In this section, we discuss branch distance for 

operations in OCL that are specific to collections, and 

that usually are not common in programming 

languages for expressing constraints/predicates and 

hence are not discussed in the literature. 

1) Equality of collections (=): In OCL constraints, 

we may need to compare the equality of two 

collections. To improve the search process by 

providing a more fine-grained heuristic, we defined a 

branch distance for comparing collections as shown in 

Figure 4. 

2) Operations checking existence of one or more 

objects in a collection: OCL defines several operations 

to check existence of one or more elements in a 

collection such as includes() and excludes(), which 

check whether an object exists in a collection or does 

not exist in a collection, respectively. Whether a 

collection is empty is checked with isEmpty() and 

notEmpty(). Such operations can be further processed 

for calculation of branch distance to improve the 

search, as described in Table III. 

3) Branch distance for iterators: OCL defines 

several operations to iterate over collections. Below, 

we will discuss branch distance for these iterators.  

The forAll iterator operation is applied to an OCL 

collection and takes as input a Boolean expression and 

determines whether the expression holds for all 

elements in the collection. For branch distance, we 

calculate the distance of the Boolean expression in 

forAll. Boolean expression on all elements in the 

collection is conjuncted. To avoid a bias toward 

reducing the size of the collection on which the 

predicate is evaluated, we scale the resulting distance 

by the number of elements in the collection. The 

general branch distance function for forAll is shown in 

Table IV. For the sake of clarity in the paper, we 

assume that function exp(v1,v2, …vm) evaluates an 

expression exp on a set of objects v1,v2, …vm in Table 

IV. Self in the table refers to the collection on which an 

operation is applied, at(i) is a standard OCL operation 

that returns the i
th

 element of a collection, and size() is 

another OCL operation that returns the number of 

elements in a collection. 

The exists iterator operation determines whether a 

Boolean expression holds for at least one element of 

the collection on which this operation is applied. The 

distance is computed for each element of the collection 

on which the Boolean expression is applied and the 

results are disjuncted. The general distance form for 

exists is shown in Table IV. In addition, we also 

provide branch distance for isUnique() and one() 

operations in the same table. 

Select, reject, collect, and iterator operations select a 

subset of elements in a collection. The select operation 

selects all elements of a collection for which a Boolean 

expression is true, whereas reject selects all elements 

of a collection for which a Boolean expression is false. 

In contrast, the collect iterator may return a subset of 

elements, which do not belong to the collection on 

which it is applied. Since all these iterators return a 

collection and not a Boolean value, we do not need to 

define branch distance for them, as discussed in 

Section IV.A. 

V. CASE STUDY: ROBUSTNESS TESTING OF VIDEO 

CONFERENCE SYSTEM 

This case study is part of a project aiming at 

supporting automated, model-based robustness testing 

of a core subsystem of a video conference system 

(VCS) called Saturn [25] developed by Tandberg AS 

(now part of Cisco Systems, Inc). Saturn is modeled as 

TABLE IV. BRANCH DISTANCE FOR FORALL AND EXISTS 

Operation Distance function 

forAll(v1,v2, …vm|exp)

  

if self->size() = 0 then 0  

otherwise  

                      
            
    

            
    

            
                   

               
  

exists( v1,v2, …vm|exp)                                                                 

isUnique(v1|exp)                                        
             
     

               
       

one( v1|exp)                                 



a UML class diagram meant to capture information 

about APIs and system (state) variables, which are 

required to generate executable test cases in our 

application context. The standard behavior of the 

system is modeled as a UML 2.0 state machine. In 

addition, we used Aspect-oriented Modeling (AOM) 

and more specifically the AspectSM profile [26] to 

model robustness behavior separately as aspect state 

machines. The robustness behavior is modeled based 

on different functional and non-functional properties, 

whose violations lead to erroneous states. Such 

properties can be related to the system or its 

environment such as the network and other systems 

interacting with the system. A weaver later on weaves 

robustness behavior into the standard behavior and 

generates a standard UML 2.0 state machine. The 

woven state machine is provided in [26]. This woven 

state machine is used for test case generation. In this 

current, simplified case study, the woven state machine 

has 11 states and 93 transitions. Out of 93 transitions, 

73 transitions model robustness behavior and 47 out of 

73 are unique, all of them requiring test data that 

satisfy the constraints to traverse them. All these 47 

transitions have change events or triggers. A change 

event is fired when a condition is met during the 

operation of a system. An example of such change 

event is shown in Figure 3. This change event is fired 

during a videoconference when the synchronization 

between audio and video passes the allowed threshold. 

SynchronizationMismatch is a non-functional property  

defined using the MARTE profile, which measures the 

synchronization between audio and video in time.  

  In our case study, we target test data generation for 

model-based robustness testing of the VCS. Testing is 

performed at the system level and we specifically 

targeted robustness faults, for example related to faulty 

situations in the network and other systems that 

comprise the environment of the SUT. Test cases are 

generated from the system state machines using our 

tool TRUST [25]. To execute test cases, we need 

appropriate data for the state variables of the system, 

state variables of the environment (network properties 

and in certain cases state variables of other VCS), and 

input parameters that may be used in the following 

UML state machine elements: (1) guard conditions on 

transitions, (2) change events as triggers on transitions, 

and (3) inputs to time events. We have successfully 

used the TRUST tool to generate test cases using 

different coverage criteria on UML state machines, 

such as all transitions, all round trip, modified round 

trip strategy [25].  

A. Empirical Evaluation 

This section discusses the experiment design, 

execution, and analysis of evaluation of the proposed 

OCL test data generator.  

1) Experiment Design: We designed our 

experiment using the guidelines proposed in [7, 28]. 

The objective of our experiment is to assess the 

efficiency of search algorithms such as GAs to 

generate test data by solving OCL constraints. In our 

experiments, we compared three search techniques: 

GA, (1+1) EA, and RS. GA was selected since it is the 

most commonly used search algorithm in search-based 

software engineering [7]. (1+1) EA is simpler than 

GAs, but in the previous work in software testing we 

found that it can be more effective in some cases (e.g., 

see [9]). We used RS as the comparison baseline to 

assess the difficulty of the addressed problem [7].  

In this paper, we want to answer the following 

research questions. 

RQ1: Are search-based techniques effective and 

efficient at solving OCL constraints in the models of 

industrial systems? 

RQ2: Among the considered search algorithms, 

which one performs best in solving OCL constraints?  

2) Experiment Execution: We ran experiments for 

47 OCL predicates as we discussed in Section 0. The 

number of clauses in each predicate varies from one to 

eight and the median value is six. Each algorithm was 

run 100 times to account for the random variation 

inherent to randomized algorithms. 

A solution is represented as an array of variables, 

the same that appear in the OCL constraint we want to 

solve. For GA, we set the population size to 100 and 

the crossover rate to 0.75, with a 1.5 bias for rank 

selection. We use a standard one-point crossover, and 

mutation of a variable is done with the standard 

probability 1/n, where n is the number of variables.  

if not (A.oclIsKindOf(B)) 

 d(A=B) := 1 

otherwise if A->size() <> B->size()  
 d(A=B) := 0.5 + 0.5*n(d (A->size()=B->size())) 

otherwise 

d(A=B) := 0.5 *  sum( n(d(pair)) )/A->size() 
where, d(pair) = distance between each paired element in the 

collection, e.g., d(A.at(i)=B.at(i)) and n is a normalizing 

function [27],  and it is defined as n(x)=x/(x+1). Suppose A and 
B are two collections in OCL. 

Figure 4. Branch distance equality of collections 

 

context Saturn inv synchronozationConstraint:  

   self.media.synchronizationMismatch.value  > self.media.synchronizationMismatchThreshold.value) 

 

Figure 3. A constraint checking synchronization of audio and video in a videoconference 



We ran each algorithm up to 2000 fitness 

evaluations on each problem and collected data on 

whether an algorithm found the solution or not. On our 

machine (Intel Core Duo CPU 2.20 GHz with 4 GB of 

RAM, running Microsoft Windows 7 operating 

system), running 2000 fitness evaluations takes on 

average 3.8 minutes for all algorithms. Instead of 

putting a limit to the number of fitness evaluations, a 

more practical approach would be to run as many 

iterations as possible, but stopping once a predefined 

time threshold is reached (e.g., 10 minutes) if the 

constraint has not been solved yet. The choice of the 

threshold would be driven by the testing budget. 

However, though useful in practice, using a time 

threshold would make it significantly more difficult 

and less reliable to compare different search algorithms 

(e.g., accurately monitoring the passing of time, side 

effects of other processes running at same time, 

inefficiencies in implementation details).   

To compare the algorithms, we calculated their 

success rate, which is defined as the number of times 

an algorithm was successful in finding optimal 

solutions out of the total number of runs.  

3) Results and Analysis: Figure 5 shows a box plot 

of the success rate of the 47 problems for (1+1) EA, 

GA, and RS. For each search technique, the box-plot is 

based on 47 success rates, one for each constraint. The 

results show that (1+1) EA outperformed both RS and 

GA, whereas GA outperformed RS. We can observe 

that, with an upper limit of 2000 iterations, (1+1) EA 

achieves a median success rate of 80% but GA does 

not exceed a median roughly 60%. We can also see 

that all success rates for (1+1) EA are above 50% and 

most of them are close to 100%. Constraints with the 

lowest success rates are seven and eight clauses long. 

Even taking the lowest success rates for the most 

difficult constraints (50%), this would entail that with r 

runs of (1+1) EA, we would achieve a success rate of 1 

- (1 - 0.5)
r
. For example, with r = 7, we would obtain a 

success rate above 99%. This entails a computation 

time of approximately 3.8*7=27 minutes. Given that 

we use a slow prototype (EyeOCL) for OCL 

expression analysis and that we could parallelize the 

search, our results suggest that our approach is 

effective, efficient, and therefore practical, even for 

difficult constraints (RQ1).  
To check the statistical significance of the results, 

we performed Fisher’s exact test between each pair of 

algorithms based on their success rates for the 47 

constraints. Due to space limitations, we do not present 

p-values for each problem and each pair of algorithms. 

In summary, we observe that for 105 times out of 141 

(47*3, where 3 represent the number of algorithm 

pairs), results were significant at the 0.05 level. We 

also carried out a paired Mann-Whitney U-test (paired 

per constraint) on the distributions of the success rates 

for the three algorithms. In all the three distribution 

comparisons, p-values were very close to 0, and hence 

showing a strong statistical difference among the three 

algorithms when applied on all the 47 constraints 

(although on some constraints there is no statistical 

difference, as the 141 Fisher’s exact tests show). 

In addition to statistical significance, we also 

assessed the magnitude of the improvement by 

calculating the effect size in a standardized way. We 

used odds ratio [28] for this purpose, as the results of 

our experiments are dichotomous. Figure 6 shows box 

plots of odds ratio for pairs of algorithms for the 47 

constraints. Between RS and (1+1) EA (the first 

column in Figure 6), the value of odds ratio is less than 

one, thus implying that (1+1) EA has more chances of 

success than RS. The odds ratio between RS and GA is 

also similar. Therefore, there is strong evidence to 

claim that (1+1) EA is significantly more successful 

than the other analyzed algorithms since, in most of the 

cases, the odds ratios comparing GA and RS with 

(1+1) EA (first and third column in Figure 6) show 

values not only lower than one,  but also very close to 

zero (RQ2).  
To check the complexity of the problems, we repeat 

the experiment on the negation of each of the 47 
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Figure 6. Odds ratio between pairs of algorithms 

 



predicates. All algorithms managed to find solutions 

for all these problems very quickly. Most of the time 

and for most of the problems, each algorithm managed 

to find solutions in a single iteration. This result 

confirmed that the actual problems we targeted with 

search were not easy to solve.  

In practice, given a time budget T, we recommend 

running (1+1) EA for as many iterations as possible. 

An alternative is to run the algorithms several times 

(e.g., r, so each run with budget T/r) but this is 

expected to be less effective as no information is 

reused between runs. But, in our experiments, this 

latter technique is already extremely effective (99% 

success rate with seven runs in the worst case). 

B. Comparision with UMLtoCSP 

UMLtoCSP [19] is the most widely used and 

referenced OCL constraint solver in the literature. To 

check the performance of UMLtoCSP to solve 

complex constraints such as the ones in our current 

industrial case study, we conducted an experiment. We 

selected the 10 most complex constraints (based on the 

number of clauses in a constraint) from our industrial 

application, which comprises constraints ranging from 

six to eight clauses (we did not analyzed all the 47 

constraints because, as we will show, these 

experiments took substantial computational time). An 

example of such constraint, modeling a change event 

on a transition of Saturn’s state machine, is shown in 

Figure 7. This change event is fired when Saturn is 

successful in recovering the synchronization between 

audio and video. Since UMLtoCSP does not support 

enumerations, we converted each enumeration into an 

Integer and limited its bound to the number of literals 

in the enumeration. We also used the MARTE profile 

to model different non-functional properties, and since 

UMLtoCSP does not support UML profiles, we 

explicitly modeled the used subset of MARTE as part 

of our models. In addition, UMLtoCSP does not allow 

writing constraints on inherited attributes of a class, so 

we modified our models and modeled inherited 

attributes directly in the classes. We set the range of 

Integer attributes from 1 to 100. 

We ran the experiment on the same machine as we 

used in the experiments reported in the previous 

section. Though we let UMLtoCSP address each of the 

selected constraints for 10 hours each, it was not 

successful in finding any valid solution. A plausible 

explanation is that UMLtoCSP is negatively affected 

by the state explosion problem, a common problem in 

real-world industrial applications such as the one from 

Tandberg/Cisco used in this paper. In contrast, even in 

the worst case, our constraint solver managed to solve 

each constraint within at most 27 minutes, as we have 

reported in the previous section.  

VI. TOOL SUPPORT  

We developed a tool in Java that interacts with an 

existing library, an OCL evaluator called EyeOCL 

[29]. EyeOCL is a Java component that provides APIs 

to parse and evaluate an OCL expression based on an 

object model. Our tool implements the calculation of 

branch distance as discussed in Section IV for various 

expressions in OCL. To calculate branch distance for 

an OCL expression, we send this expression for 

parsing to EyeOCL and obtain a parse tree of the 

expression. We manipulate the parse tree and call 

EyeOCL with the current set of values for variables in 

the expression and calculate the branch distance. The 

search algorithms employed in this paper were 

implemented in Java as well.  

VII. THREATS TO VALIDITY 

To reduce construct validity threats, we chose the 

measure success rate, which is comparable across all 

three algorithms ((1+1) EA, GA and RS) that we used. 

Furthermore, we used the same stopping criterion for 

all algorithms, i.e., number of fitness evaluations. This 

criterion is comparable across all the algorithms that 

we studied because each iteration requires updating the 

object diagram in EyeOCL and evaluating a query on 

it. This time is same for all the algorithms, and it is 

rather expensive (approximately, 0.114 second per 

iteration).  

The most probable conclusion validity threat in 

experiments involving randomized algorithms is due to 

random variation. To address it, we repeated 

experiments 100 times to reduce the possibility that the 

results were obtained by chance. Furthermore, we 

perform Fisher exact test to compare proportions to 

determine statistical significance of results. We chose 

Fisher’s exact test because it is appropriate for 

dichotomous data where proportions must be 

compared, thus matching our case [28]. To determine 

practical significance of results, we measure the effect 

size using the odds ratio of success rates across search 

techniques. 

A possible threat to internal validity is that we have 

experimented with only one configuration setting for 

the GA parameters. However, these settings are in line 

with common guidelines in the literature and our 

previous experience on testing problems. 

In the empirical comparisons with UMLtoCSP, 

there is the threat that we might have wrongly 

configured it. To reduce the probability of such an 

event, we contacted the authors of UMLtoCSP who 

were very helpful in ensuring its proper use. 



   

We ran our experiments on an industrial case study 

to generate test data for 47 different OCL constraints, 

ranging from simpler constraints having just one clause 

to complex constraints having eight clauses. Although 

the empirical analysis is based on a real industrial 

system and not on small artificial problems (as most 

work in the literature [11], [13], and [16]), our results 

might not generalize to other case studies. However, 

such threat to external validity is common to all 

empirical studies. 

From our analysis of UMLtoCSP, we cannot 

generalize our results to traditional constraint solvers in 

general when applied to solve OCL constraints. 

However, empirical comparisons with other constraints 

solvers were not possible because, to the best of our 

knowledge, UMLtoCSP is not only the most 

referenced OCL solver but also the only one that is 

publically available.  

VIII. CONCLUSION 

In this paper, we presented a search-based 

constraint solver for the Object Constraint Language 

(OCL). The goal is to achieve a practical, scalable 

solution to support test data generation for Model-

based Testing (MBT). Existing OCL constraint solvers 

have one or more of the following problems that make 

them difficult to use in industrial applications: (1) they 

support only a subset of OCL; (2) they translate OCL 

into formalisms such as first order logic, temporal 

logic, or Alloy, and thus are relying on non-standard 

technologies and result into combinatorial explosion 

problems. These problems limit their practical adoption 

in industrial settings.  

To overcome the abovementioned problems, we 

defined a set of heuristics based on OCL constraints to 

guide search-based algorithms (genetic algorithms, 

(1+1) EA) and implemented them in our search-based 

OCL constraint solver. More specifically, we defined 

branch distance functions for various types of 

expressions in OCL to guide search algorithms. We 

demonstrated the effectiveness and efficiency of our 

search-based constraint solver to generate test data in 

the context of the model-based, robustness testing of an 

industrial case study of a video conferencing system. 

Even for the most difficult constraints, with research 

prototypes and no parallel computations, we obtain test 

data within 27 minutes in the worst case and in less 

than 4 minutes on average.  

As a comparison, we ran the 10 most complex 

constraints on one well-known, downloadable OCL 

solver (UMLtoCSP) and the results showed that, even 

after running it for 10 hours, no solutions could be 

found. Similar to all existing OCL solvers, because it 

could not handle all OCL constructs, we had to 

transform our constraints to satisfy UMLtoCSP 

requirements.  

We also conducted an empirical evaluation in which 

we compared three search algorithms using two 

statistical tests: Fisher’s exact test between each pair of 

algorithms to test their differences in success rates for 

each constraints and a paired Mann-Whitney U-test on 

the distributions of the success rates (paired per 

constraint). Results showed that (1+1) EA was 

significantly better than GA, which itself were 

significantly better than random search. Notice that in 

both empirical evaluations, the execution times were 

obtained on a regular PC. 

Future work will consider hybrid approaches, in 

which traditional constraint solver techniques will be 

integrated with search algorithms, with the aim to 

overcome the current limitations that both approaches 

have and exploit the best of both worlds.    
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