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Abstract

Despite a variety of available techniques the issue of the proper regularization parameter
choice for inverse problems still remains one of the biggest challenges. The main difficulty
lies in constructing a rule, allowing to compute the parameter from given noisy data without
relying either on a priori knowledge of the solution or on the noise level. In this paper
we propose a novel method based on supervised machine learning to approximate the
high-dimensional function, mapping noisy data into a good approximation to the optimal
Tikhonov regularization parameter. Our assumptions are that solutions of the inverse
problem are statistically distributed in a concentrated manner on (lower-dimensional) linear
subspaces and the noise is sub-gaussian. One of the surprising facts is that the number of
previously observed examples for the supervised learning of the optimal parameter mapping
scales at most linearly with the dimension of the solution subspace. We also provide
explicit error bounds on the accuracy of the approximated parameter and the corresponding
regularization solution. Even though the results are more of theoretical nature, we present a
recipe for the practical implementation of the approach and provide numerical experiments
confirming the theoretical results. We also outline interesting directions for future research
with some preliminary results, confirming their feasibility.

Keywords: Tikhonov regularization, parameter choice rule, sub-gaussian vectors, high
dimensional function approximations, concentration inequalities.

1. Introduction

In many practical problems, one cannot observe directly the quantities of most interest;
instead their values have to be inferred from their effects on observable quantities. When
this relationship between observable Y and the quantity of interest X is (approximately)
linear, as it is in surprisingly many cases, the situation can be modeled mathematically by
the equation

Y = AX (1)

for A being a linear operator model. If A is a “nice”, easily invertible operator, and if the
data Y are noiseless and complete, then finding X is a trivial task. Often, however, the
mapping A is ill-conditioned or not invertible. Moreover, typically (1) is only an idealized

1



De Vito, Fornasier and Naumova

version, which completely neglects any presence of noise or disturbances; a more accurate
model is

Y = AX + η, (2)

in which the data are corrupted by an (unknown) noise. In order to deal with this type of
reconstruction problem a regularization mechanism is required (Engl et al., 1996).

Regularization techniques attempt to incorporate as much as possible an (often vague) a
priori knowledge on the nature of the solution X. A well-known assumption which is often
used to regularize inverse problems is that the solution belongs to some ball of a suitable
Banach space.

Regularization theory has shown to play its major role for solving infinite dimensional
inverse problems. In this paper, however, we consider finite dimensional problems, since we
intend to use probabilistic techniques for which the Euclidean space is the most standard
setting. Accordingly, we assume the solution vector X ∈ Rd, the linear model A ∈ Rm×d,
and the datum Y ∈ Rm. In the following we denote with ‖Z‖ the Euclidean norm of a vector
Z ∈ RN . One of the most widely used regularization approaches is realized by minimizing
the following, so-called, Tikhonov functional

min
z∈Rd
‖Az − Y ‖2 + α ‖z‖2. (3)

with α ∈ (0,+∞). The regularized solution Zα := Zα(Y ) of such minimization procedure
is unique. In this context, the regularization scheme represents a trade-off between the
accuracy of fitting the data Y and the complexity of the solution, measured by a ball in
Rd with radius depending on the regularization parameter α. Therefore, the choice of the
regularization parameter α is very crucial to identify the best possible regularized solution,
which does not overfit the noise. This issue still remains one of the most delicate aspects
of this approach and other regularization schemes. Clearly the best possible parameter
minimizes the discrepancy between Zα and the solution X

α∗ = arg min
α∈(0,+∞)

‖Zα −X‖.

Unfortunately, we usually have neither access to the solution X nor to information about
the noise, for instance, we might not be aware of the noise level ‖η‖. Hence, for determining
a possible good approximation to the optimal regularization parameter several approaches
have been proposed, which can be categorized into three classes

• A priori parameter choice rules based on the noise level and some known “smoothness”
of the solution encoded in terms, e.g., of the so-called source condition (Engl et al.,
1996);

• A posteriori parameter choice rules based on the datum Y and the noise level;

• A posteriori parameter choice rules based exclusively on the datum Y or, the so-called,
heuristic parameter choice rules.

For the latter two categories there are by now a multitude of approaches. Below we recall
the most used and relevant of them, indicating in square brackets their alternative names,
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accepted in different scientific communities. In most cases, the names we provide are the
descriptive names originally given to the methods. However, in a few cases, there was no
original name, and, to achieve consistency in the naming, we have chosen an appropriate
one, reflecting the nature of the method. We mention, for instance, (transformed/modified)
discrepancy principle [Raus-Gfrerer rule, minimum bound method]; monotone error rule;
(fast/hardened) balancing principle also for white noise; quasi-optimality criterion; L-curve
method; modified discrepancy partner rule [Hanke-Raus rule]; extrapolated error method;
normalized cumulative periodogram method; residual method; generalized maximum likeli-
hood; (robust/strong robust/modified) generalized cross-validation. Considering the large
number of available parameter choice methods, there are relatively few comparative studies
and we refer to (Bauer and Lukas, 2011) for a rather comprehensive discussion on their dif-
ferences, pros and contra. One of the features which is common to most of the a posteriori
parameter choice rules is the need of solving (3) multiple times for different values of the
parameters α, often selected out of a conveniently pre-defined grid.

In this paper, we intend to study a novel, fully data-driven, method for the determination
of the optimal parameter in Tikhonov regularization. After an off-line learning phase, whose
complexity scales at most algebraically with the dimensionality of the problem, our method
does not require any additional knowledge of the noise level and the computation of a
near-optimal regularization parameter can be performed very efficiently without the need
of solving the regularization problem (3) multiple times. The approach aims at employing
the framework of supervised machine learning to the problem of approximating the high-
dimensional function, which maps noisy data into the corresponding optimal regularization
parameter. More precisely, we assume that we are allowed to see a certain number n of
examples of solutions Xi and corresponding noisy data Yi = AXi + ηi, for i = 1, . . . , n.
For all of these examples, we are clearly capable to compute the optimal regularization
parameters as in the following scheme

(X1, Y1) → α∗1 = arg min
α∈(0,+∞)

‖Zα(Y1)−X1‖

(X2, Y2) → α∗2 = arg min
α∈(0,+∞)

‖Zα(Y2)−X2‖
. . . . . .

(Xn, Yn) → α∗n = arg min
α∈(0,+∞)

‖Zα(Yn)−Xn‖

(??, Y ) → ᾱ

Denote µ the joint distribution of the empirical samples (Y1, α
∗
1), . . . , (Yn, α

∗
n). Were its

conditional distribution µ(· | Y ) with respect to the first variable Y very much concentrated
(for instance, when

∫∞
0 (α− ᾱ)qdµ(α | Y ) is very small for q ≥ 1 and for variable Y ), then

we could design a proper regression function

R : Y 7→ ᾱ := R(Y ) =

∫ ∞
0

αdµ(α | Y ).

Such a mapping would allow us, to a given new datum Y (without given solution!), to
associate the corresponding parameter ᾱ not too far from the true optimal one α∗, at least
with high probability. We illustrate schematically this theoretical framework in Figure 1.
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Figure 1: Learning optimal regularization parameters from previously observed samples by
approximation of the regression function R.

At a first glance, this setting may seem quite hopeless. First of all, one should establish
the concentration of the conditional distribution generating α∗ given Y . Secondly, even
if we assume that the regression function R is very smooth, the vectors Y belong to the
space Rm and the number of observations n required to learn such a function need to scale
exponentially with the dimension m (Novak and Woźniakowski, 2009). It is clear that we
cannot address neither of the above issues in general. The only hope is that the solutions
are statistically distributed in a concentrated manner over smooth sets of lower dimension
h� m and the noise has also a concentrated distribution, so that the corresponding data Y
are concentrated around lower-dimensional sets as well. And luckily these two assumptions
are to a certain extent realistic.

By now, the assumption that the possible solutions belong to a lower-dimensional set
of Rd has become an important prior for many signal and image processing tasks. For
instance, were solutions natural images, then it is known that images can be represented
as nearly-sparse coefficient vectors with respect to shearlets expansions (Kutyniok and La-
bate, 2012). Hence, in this case the set of possible solutions can be stylized as a union of
lower-dimensional linear subspaces, consisting of sparse vectors. In other situations, it is
known that the solution set can be stylized, at least locally, as a smooth lower-dimensional
nonlinear manifold V (Chen et al., 2013). Also in this case, at least locally, it is possible to
approximate the solution set by means of affine lower-dimensional sets, representing tan-
gent spaces to the manifold. Hence, the a priori knowledge that the solution is belonging
to some special (often nonlinear) set should also be taken into account when designing the
regularization method.

In this paper, we want to show very rigorously how one can construct, from a rela-
tively small number of previously observed examples, an approximation R̂ to the regression
function R, which is mapping a noisy datum into a good approximation to the optimal
Tikhonov regularization parameter. To this end, we assume the solutions to be distributed
sub-gaussianly over a linear subspace V ⊂ Rd of dimension h � m and the noise η to be
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also sub-gaussian. The first statistical assumption is perhaps mostly technical to allow us
to provide rigorous estimates. Let us describe the method of computation as follows. We
introduce the d× d noncentered covariance matrix built from the noisy measurements

Σ̂n =
1

n

n∑
i=1

Yi ⊗ Yi,

and we denote by Π̂n the projections onto the vector space spanned by the first most relevant
eigenvectors of Σ̂n. Furthermore, we set α̂n ∈ (0,+∞) as the minimizer of

min
α∈(0,+∞)

‖Zα −A†Π̂nY ‖2,

where A† is the pseudo-inverse. We define

R̂(Y ) = α̂n

and we claim that this is actually a good approximation, up to noise level, to R as soon
as n is large enough, without incurring in the curse of dimensionality. More precisely, we
prove that, for a given τ > 0, with probability greater than 1− 6e−τ

2
, we have that

‖Zα̂n −X‖ ≤ ‖Zα∗ −X‖+
1

σd
B(n, τ, σ),

where σd is the smallest singular value of A. Let us stress that B(n, τ, σ) gets actually small
for small σ and for n = O(h) (see formula (29)), hence there is no curse of dimensionality and
R̂(Y ) = α̂n is quasi-optimal. We further provide an explicit expression for B in Proposition
5. In the special case where A = I we derive a bound on the difference between the learned
parameter α̂n and the optimal parameter α∗, see Theorem 11, justifying even more precisely
the approximation R̂(Y ) = α̂n ≈ α∗ = R(Y ).

The paper is organized as follows: After introducing some notation and problem set-up
in the next section, we provide the accuracy bounds on the learned estimators with respect
to their distribution dependent counterparts in Section 3. For the special case A = I we pro-
vide an explicit bound on the difference between the learned and the optimal regularization
parameter and discuss the amount of samples needed for an accurate learning in Section
4. We also exemplify the presented theoretical results with a few numerical illustrations.
Section 5 provides explicit formulas by means of numerical linearization for the parameter
learning. Section 6 offers a snapshot of the main contributions and presents a list of open
questions for future work. Finally, Appendix A and Appendix B contain some background
information on perturbation theory for compact operators, the sub-gaussian random vari-
ables, and proofs of some technical theorems, which are valuable for understanding the
scope of the paper.

2. Setting

This section presents some background material and sets the notation for the rest of the
work. First, we fix some notation. The Euclidean norm of a vector v is denoted by ‖v‖
and the Euclidean scalar product between two vectors v, w by 〈v, w〉. We denote with Sd−1
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the Euclidean unit sphere in Rd. If M is a matrix, MT denotes its transpose, M † the
pseudo-inverse, M †k = (M †)k and ‖M‖ its spectral norm. Furthermore, kerM and ranM
are the null space and the range of M respectively. For a square-matrix M , we use Tr(M)
to denote its trace. If v and w are vectors (possibly of different length), v ⊗ w is the rank
one matrix with entries (v ⊗ w)ij = viwj .

Given a random vector ξ ∈ Rd, its noncentered covariance matrix is denoted by

Σξ = E[ξ ⊗ ξ],

which is a positive matrix satisfying the following property

ran Σξ = (ker Σξ)
⊥ = span{x ∈ Rd | P[ξ ∈ B(x, r)] > 0 ∀r > 0}, (4)

here B(x, r) denotes the ball of radius r with the center at x. A random vector ξ is called
sub-gaussian if

‖ξ‖ψ2 := sup
v∈Sd−1

sup
q≥1

q−
1
2E[|〈ξ, v〉|q]

1
q < +∞. (5)

The value ‖ξ‖ψ2 is called the sub-gaussian norm of ξ and the space of sub-gaussian vec-
tors becomes a normed vector space (Vershynin, 2012). Appendix B reviews some basic
properties about sub-gaussian vectors.

We consider the following class of inverse problems.

Assumption 1 In the statistical linear inverse problem

Y = AX + σW,

the following conditions hold true:

a) A is an m× d-matrix with norm ‖A‖ = 1;

b) the signal X ∈ Rd is a sub-gaussian random vector with ‖X‖ψ2 = 1;

c) the noise W ∈ Rm is a sub-gaussian centered random vector independent of X with
‖W‖ψ2 = 1/

√
2 and with the noise level 0 < σ <

√
2;

d) the covariance matrix ΣX of X has a low rank matrix, i.e.,

rank(ΣX) = h� d.

We add some comments on the above conditions. The normalisation assumptions on ‖A‖,
‖X‖ψ2 and ‖W‖ψ2 are stated only to simplify the bounds. They can always be satisfied by
rescalingA, X andW and our results hold true by replacing σ with

√
2‖W‖ψ2‖A‖−1‖X‖

−1
ψ2
σ.

The upper bound on σ reflects the intuition that σW is a small perturbation of the noiseless
problem.

Condition d) means that X spans a low dimensional subspace of Rd. Indeed, by (4)
condition d) is equivalent to the fact that the vector space

V = ran ΣX = span{x ∈ Rd | P[X ∈ B(x, r)] > 0 for all r > 0} (6)
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is an h-dimensional subspace and h is the dimension of the minimal subspace containing X
with probability 1, i.e.,

h = min
K

dimK,

where the minimum is taken over all subspaces K ⊂ Rd such that P[X ∈ K] = 1.
We write a . b if there exists an absolute constant C such that a ≤ Cb. By absolute

we mean that it holds for all the problems Y = AX + σW satisfying Assumption 1, in
particular, it is independent of d,m and h.

The datum Y depends only on the projection X† of X onto kerA⊥ and Zα as solutions
of (3) also belong to kerA⊥. Therefore, we can always assume, without loss of generality,
for the rest of the paper that A is injective by replacing X with X†, which is a sub-gaussian
random vector, and Rd with kerA⊥.

Since A is injective, rank(A) = d and we define the singular value decomposition of A
by (ui, vi, σi)

d
i=1, so that A = UDV T or

Avi = σiui, i = 1, . . . , d,

where σ1 ≥ σ2 ≥ · · · ≥ σd > 0. Since ‖A‖ = 1, clearly σ1 = 1. Furthermore, let Q be the
projection onto the span{u1, . . . , ud}, so that QA = A, and we have the decomposition

Q = AA†. (7)

Recalling (6), since A is now assumed injective and

ΣAX = E[AX ⊗AX] = AΣXA
T ,

then
W = ran ΣAX = (ker ΣAX)⊥ = AV, (8)

and, by condition d) in Assumption 1, we have as well dimW = h.
We denote by Π the projection onto W and by

p = max{i ∈ {1, . . . , d} | Πui 6= 0}, (9)

so that, with probability 1,

ΠAX = AX and X =

p∑
i=1

〈X, vi〉vi. (10)

Finally, the random vectors η = σW , AX, and Y are sub-gaussian and take value in Rm,
W, and Rm, respectively, with

‖AX‖ψ2 ≤ ‖AT ‖‖X‖ψ2 = 1 ‖Y ‖ψ2 ≤ ‖AX‖ψ2 + σ‖W‖ψ2 ≤ 2 (11)

since, by Assumption 1, ‖A‖ = 1 and σ ≤
√

2.
For any t ∈ [0, 1] we set Zt as the solution of the minimization problem

min
z∈Rd

(
t ‖Az − Y ‖2 + (1− t) ‖z‖2

)
, (12)

7



De Vito, Fornasier and Naumova

which is the solution of the Tikhonov functional

min
z∈Rd
‖Az − Y ‖2 + α ‖z‖2.

with α = (1− t)/t ∈ [0,+∞].
For t < 1, the solution is unique, for t = 1 the minimizer is not unique and we set

Z1 = A†Y.

The explicit form of the solution of (12) is given by

Zt = t(tATA+ (1− t)I)−1ATY (13)

=

d∑
i=1

tσi
tσ2i + (1− t)

〈Y, ui〉vi

=

d∑
i=1

(
tσ2i

tσ2i + (1− t)
〈X, vi〉+

tσi
tσ2i + (1− t)

〈η, ui〉
)
vi,

which shows that Zt is also a sub-gaussian random vector.
We seek for the optimal parameter t∗ ∈ [0, 1] that minimizes the reconstruction error

min
t∈[0,1]

‖Zt −X‖2.

Since X is not known, the optimal parameter t∗ can not be computed. We assume that we
have at disposal a training set of n-independent noisy data

Y1, . . . , Yn,

where Yi = AXi + σWi, and each pair (Xi,Wi) is distributed as (X,W ), for i = 1, . . . , n.
We introduce the d× d empirical covariance matrix

Σ̂n =
1

n

n∑
i=1

Yi ⊗ Yi, (14)

and we denote by Π̂n the projections onto the vector space spanned by the first h-eigenvectors
of Σ̂n, where the corresponding (repeated) eigenvalues are ordered in a nonincreasing way.

Remark 1 The well-posedness of the empirical realization Π̂n in terms of spectral gap at
the h-th eigenvalue will be given in Theorem 3, where we show that for n large enough the
h+ 1-th eigenvalue is strictly smaller than the h-th eigenvalue.

We define the empirical estimators of X and η as

X̂ = A†Π̂nY and η̂ = (Y − Π̂nY ), (15)

so that, by Equation (7),
AX̂ +Qη̂ = QY. (16)
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Furthermore, we set t̂n ∈ [0, 1] as the minimizer of

min
t∈[0,1]

‖Zt − X̂‖2.

If X̂ is close to X, we expect that the solution Z t̂n has a reconstruction error close to the
minimum value. In the following sections, we study the statistical properties of t̂n. However,
we first provide some a priori information on the optimal regularization parameter t∗.

2.1 Distribution dependent quantities

We define the function t 7→ ‖R(t)‖2, where

R(t) = Zt −X t ∈ [0, 1]

is the reconstruction error vector. Clearly, the function t 7→ ‖R(t)‖2 is continuous, so that
a global minimizer t∗ always exists in the compact interval [0, 1].

Define for all t ∈ [0, 1] the d× d matrix

B(t) = tATA+ (1− t)I =

d∑
i=1

(tσ2i + 1− t) vi ⊗ vi,

which is invertible since A is injective and its inverse is

B(t)−1 =
d∑
i=1

1

tσ2i + 1− t
vi ⊗ vi.

Furthermore, B(t) and B(t)−1 are smooth functions of the parameter t and

B′(t) = (ATA− I) (B(t)−1)′ = −B(t)−2(ATA− I). (17)

Since Y = AX + η, expression (13) gives

R(t) = tB(t)−1ATY −X (18)

= tB(t)−1AT (AX + η)−X
= B(t)−1(tATAX −B(t)X + tAT η)

= B(t)−1(−(1− t)X + tAT η).

Hence,

‖R(t)‖2 = ‖B(t)−1(−(1− t)X + tAT η)‖2

=

d∑
i=1

(
−(1− t)ξi + tσiνi
tσ2i + (1− t)

)2

,

where for all i = 1, . . . , d

ξi = 〈X, vi〉 νi = 〈η, ui〉.
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In order to characterize t∗ we may want to seek it among the zeros of the following function

H(t) =
1

2

d

dt
‖Zt −X‖2 = 〈R(t), R′(t)〉.

Taking into account (17), the differentiation of (18) is given by

R′(t) = B(t)−1ATY − tB(t)−2(ATA− I)ATY (19)

= B(t)−2(B(t)− t(ATA− I))ATY

= B(t)−2ATY,

so that

H(t) = 〈AB(t)−3(−(1− t)X + tAT η), AX + η〉 (20)

=
d∑
i=1

σi
−(1− t)ξi + tσiνi
(tσ2i + (1− t))3

(ξiσi + νi)

=
d∑
i=1

σiξi(ξiσi + νi)
(σiνiξ

−1
i + 1)t− 1

(1− (1− σ2i )t)3

=

d∑
i=1

σiαihi(t),

where αi = ξi(σiξi + νi) and hi(t) =
(σiνiξ

−1
i +1)t−1

(1−(1−σ2
i )t)

3 .

We observe that

a) if t = 0 (i.e., α = +∞), B(0) = I, then

H(0) = −‖AX‖2 + 〈AX, η〉,

which is negative if ‖Πη‖ ≤ ‖AX‖, i.e., for

σ ≤ ‖AX‖
‖ΠW‖

.

Furthermore, by construction,

E[H(0)] = −Tr(ΣAX) < 0;

b) if t = 1 (i.e., α = 0), B(0) = ATA and

H(1) = 〈A(ATA)−3AT η,AX + η〉
= ‖(AAT )†η‖2 + 〈(AAT )†η, (AT )†X〉,

which is positive if ‖(AAT )†η‖ ≥ ‖(AT )†X‖, for example, when

σ ≥ σd
‖X‖
|〈W,ud〉|

.

Furthermore, by construction,

E[H(1)] = Tr(Σ(AAT )†η) > 0.
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Hence, if the noise level satisfies

‖X‖
|〈W,ud〉|

≤ σ ≤ ‖AX‖
‖ΠW‖

the minimizer t∗ is in the open interval (0, 1) and it is a zero of H(t). If σ is too small,
there is no need of regularization since we are dealing with a finite dimensional problem.
On the opposite side, if σ is too big, the best solution is the trivial one, i.e., Zt

∗
= 0.

2.2 Empirical quantities

We replace X and η with their empirical counterparts defined in (15). By Equation (16)
and reasoning as in Equation (18), we obtain

R̂n(t) = Zt − X̂

= tB(t)−1ATQY − X̂

= B(t)−1(−(1− t)X̂ + tAT η̂),

and

‖R̂n(t)‖2 = ‖B(t)−1(−(1− t)X̂ + tAT η̂)‖2

=

d∑
i=1

(
−(1− t)ξ̂i + tσiν̂i
tσ2i + (1− t)

)2

,

where for all i = 1, . . . , d

ξ̂i = 〈X̂, vi〉 and ν̂i = 〈η̂, ui〉.

Clearly,
R̂′n(t) = R′(t) = B(t)−2ATQY. (21)

From (20), we get

Ĥn(t) = 〈R̂n(t), R̂′n(t)〉 (22)

= 〈B(t)−3(−(1− t)X̂ + tAT η̂), ATAX̂ +AT η̂)〉

=

d∑
i=1

−(1− t)ξ̂i + tσiν̂i
(1− (1− σ2i )t)3

(ξ̂iσ
2
i + σiν̂i),

=
d∑
i=1

σiα̂iĥi(t),

where α̂i = ξ̂i(σiξ̂i + ν̂i) and ĥi(t) =
(σiν̂iξ̂

−1
i +1)t−1

(1−(1−σ2
i )t)

3 .

An alternative form in terms of Y and Π̂n, which can be useful as a different numerical
implementation, is

Ĥn(t) = 〈B(t)−1(tAT (Y − Π̂nY )− (1− t)A−1Π̂nY ), B(t)−2ATY 〉

= 〈tAAT (Y − Π̂nY )− (1− t)QΠ̂nY , (tAA
T + (1− t)I)†3QY 〉

= 〈tAAT (Y − Π̂nY )− (1− t)Π̂nY , (tAA
T + (1− t)I)†3QY 〉.
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As for t∗, the minimizer t̂n of the function t 7→ ‖R̂n(t)‖2 always exists in [0, 1] and, for σ
in the range of interest, it is in the open interval (0, 1), so that it is a zero of the function
Ĥn(t).

3. Concentration inequalities

In this section, we bound the difference between the empirical estimators and their distri-
bution dependent counterparts.

By (8) and item d) of Assumption 1, the covariance matrix ΣAX has rank h and, we
set λmin to be the smallest non-zero eigenvalue of ΣAX . Furthermore, we denote by ΠY

the projection from Rm onto the vector space spanned by the eigenvectors of ΣY , whose
eigenvalue is greater than λmin/2.

The following proposition shows that ΠY is close to Π if the noise level is small enough.

Proposition 2 If σ2 < λmin/4, then dim ran ΠY = h and

‖ΠY −Π‖ ≤ 2σ2

λmin
. (23)

Proof Since AX and W are independent and W has zero mean, then

ΣY = ΣAX + σ2ΣW .

We apply Proposition 14 from Appendix A with A = ΣAX and B = ΣY , regarded as
(compact) operators on Rm. Since ΣW is a positive matrix and W is a sub-gaussian vector
satisfying (11), with the choice q = 2 in (5), we have

‖ΣW ‖ = sup
v∈Sm−1

〈ΣW v, v〉 = sup
v∈Sm−1

E[〈W, v〉2] ≤ 2‖W‖2ψ2
= 1, (24)

so that ‖ΣY − ΣAX‖ ≤ σ2 < λmin/4.
By (8) the rank of ΣAX is h and, with the notation of Proposition 14, we have that

N = h. With the choice of j = h, so that Π = Ph and λmin = αj − αj+1, there ex-
ists m such that βm is the m-the largest eigenvalue1 of ΠY , dimQm = dimPh = h and
βm+1 < λmin/2 < βm. It follows that ΠY = Qm, dim ran ΠY = h, and (37) implies (23)
since λh+1 = 0.

Recall that Π̂n is the projection onto the vector space spanned by the first h-eigenvectors
of Σ̂n defined by (14).

Theorem 3 Given τ > 0 with probability greater than 1 − 2e−τ
2
, Π̂n coincides with the

projection onto the vector space spanned by the eigenvectors of Σ̂n, whose eigenvalues are
greater than λmin/2. Furthermore

‖Π̂n −Π‖ . 1

λmin

(√
m

n
+

τ√
n

+ σ2
)
, (25)

1. In the statement of Proposition 14 the eigenvalues are counted without their multiplicity.

12
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provided that

n & (
√
m+ τ)2 max

{
64

λ2min

, 1

}
(26)

σ2 <
λmin

8
.

Proof Observe that Theorem 19 applied with ξi = Yi and (24) imply that, with probability
greater than 1− 2e−τ

2
,

‖Σ̂n − ΣAX‖ ≤ ‖Σ̂n − ΣY ‖+ ‖ΣY − ΣAX‖

≤ C
(√

m

n
+

τ√
n

)
+ σ2

≤ λmin

8
+
λmin

8
=
λmin

4
,

where the last inequality follows by the assumptions on n, σ, and

C

√
m

n
+

τ√
n
≤ min{1, λmin/8} ≤ 1.

Proposition 14 with A = ΣAX , B = Σ̂n, and N = h tells that βm, the m largest eigen-
value of Σ̂n, satisfies βm+1 < λmin/2 < βm. Let Qm the orthogonal projection onto the
vector space spanned by the eigenvectors of Σ̂n, whose eigenvalues are greater or equal than
λmin/2. Then, dim ranQm = dim ran Π = h, so that Qm = Π̂n. Finally, (37) implies (25).
Note that the constant C depends on ‖Y ‖ψ2 ≤ 2 by (11), so that it becomes an absolute
constant, when considering the worst case ‖Y ‖ψ2 = 2.

If n and σ satisfy (26), the above proposition shows that the empirical covariance matrix
Σ̂n has a spectral gap around the value λmin/2 and the number of eigenvectors, whose
eigenvalues are greater than λmin/2, is precisely h, so that Π̂n is uniquely defined. Further-
more, the dimension h can be estimated by observing spectral gaps in the singular value
decomposition of Σ̂n.

We need the following technical lemma.

Lemma 4 Given τ > 0, with probability greater than 1− 4e−τ
2
, simultaneously it holds

‖X‖ . (
√
h+ τ) ‖Y ‖ . (

√
h+ σ

√
m+ τ) ‖ΠW‖ . (

√
h+ τ). (27)

Proof Since X is a sub-gaussian random vector taking values in V with h = dimV, taking
into account that ‖X‖ψ2 = 1, bound (39) gives

‖X‖ ≤ 9(
√
h+ τ),

with probability greater than 1− 2e−τ
2
. Since W is a centered sub-gaussian random vector

taking values in Rm and ‖W‖ψ2 ≤ 1, by (40)

‖W‖ ≤ 16(
√
m+ τ),

13
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with probability greater than 1− e−τ
2
. Since ‖A‖ = 1 and

‖Y ‖ ≤ ‖AX‖+ σ‖W‖ ≤ ‖X‖+ σ‖W‖,

the first two bounds in (27) hold true with probability greater than 1−3e−τ
2
. Since ΠW is a

centered sub-gaussian random vector taking values inW with h = dimW, and ‖ΠW‖ψ2 ≤ 1,
by (40)

‖ΠW‖ ≤ 16(
√
h+ τ),

with probability greater than 1− e−τ
2
.

As a consequence, we have the following bound.

Proposition 5 Given τ > 0, if n and σ satisfy (26), then with probability greater than
1− 6e−τ

2

‖(Π− Π̂n)Y −Πη‖ . B(n, τ, σ), (28)

where

B(n, τ, σ) =
1

λmin

√
hm

n
+ σ

(√
h+

1

λmin

m√
n

)
+

σ2

λmin

√
h+

σ3

λmin

√
m+ (29)

+ τ

(
1

λmin

√
m

n
+ σ

(
1 +

1

λmin

√
m

n

)
+

σ2

λmin

)
+ τ2

1

λmin

1√
n
.

Proof Clearly,
‖(Π− Π̂n)Y −Πη‖ ≤ ‖Π− Π̂n‖‖Y ‖+ σ‖ΠW‖.

If (26) holds true, bounds (25) and (27) imply

‖(Π− Π̂n)Y −Πη‖ . 1

λmin

(√
m

n
+

τ√
n

+ σ2
)

(
√
h+ σ

√
m+ τ) + σ(

√
h+ τ),

with probability greater than 1−6e−τ
2
. By developing the brackets and taking into account

that
√
h+m ≤

√
2m, (28) holds true.

Remark 6 Usually in machine learning bounds of the type (28) are considered in terms of
their expectation, e.g., with respect to (X,Y ). In our framework, this would amount to the
following bound

E
[
‖(Π− Π̂n)Y −Πη‖

∣∣∣Y1, . . . , Yn] .
.

1

λmin

(√
m

n
+

τ√
n

+ σ2
)

(
√
h+ σ

√
m) + σ

√
h,

obtained by observing that E[‖Y ‖] ≤ E[‖A‖‖X‖] + σE[‖W‖],

E[‖X‖]2 ≤ E[‖X‖2] = Tr(ΣX) ≤ 2h‖X‖2ψ2
. h,

and, by a similar computation,

E[‖W‖] .
√
m E[‖ΠW‖] .

√
h.

Our bound (28) is much stronger and it holds in probability with respect to both the training
set Y1, . . . Yn and the new pair (X,Y ).

14
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Our first result is a direct consequence of the estimate (28).

Theorem 7 Given τ > 0, with probability greater than 1− 6e−τ
2
,

‖X̂ −X‖ . 1

σd
B(n, τ, σ)

‖Qη̂ −Qη‖ . B(n, τ, σ)

‖Z t̂n −X‖ − ‖Zt∗ −X‖ . 1

σd
B(n, τ, σ)

sup
0≤t≤1

|‖R̂n(t)‖ − ‖R(t)‖| . 1

σd
B(n, τ, σ)

provided that n and σ satisfy (26).

Proof By the first identity of (10)

X − X̂ = A†ΠAX −A†Π̂n(AX + η) (30)

= A†(Π− Π̂n)AX +A†(Π− Π̂n)η −A†Πη

= A†
(

(Π− Π̂n)Y −Πη
)
,

so that

‖X − X̂‖ ≤ 1

σd
‖(Π− Π̂n)Y −Πη‖.

An application of (28) to the previous estimate gives the first bound of the statement.
Similarly, we derive the second bound as follows. Equations (16), (7), and (30) yield

Qη −Qη̂ = A(X − X̂)

= Q
(

(Π− Π̂n)Y −Πη
)
.

The other bounds follow by estimating them by multiples of ‖X − X̂‖ as we show below.
By definition of t̂n

‖Z t̂n −X‖ ≤ ‖Z t̂n − X̂‖+ ‖X − X̂‖

≤ ‖Zt∗ − X̂‖+ ‖X − X̂‖,

≤ ‖Zt∗ −X‖+ 2‖X − X̂‖.

Furthermore,

R̂n(t)−R(t) = X − X̂ = A†
(

(Π− Π̂n)Y −Πη
)
, (31)

and triangle inequality gives

sup
0≤t≤1

|‖R̂n(t)‖ − ‖R(t)‖| ≤ sup
0≤t≤1

‖R̂n(t)−R(t)‖ = ‖X − X̂‖.

All the remaining bounds in the statement of the theorem are now consequences of (28).
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Remark 8 To justify and explain the consistency of the sampling strategy for approxi-
mation of the optimal regularization parameter t∗, let us assume that n goes to infinity
and σ vanishes. Under this theoretical assumption, Theorem 7 shows that ‖R̂n(t)‖ con-
vergences uniformly to ‖R(t)‖ with high probability. The uniform convergence implies the
Γ-convergence (see Braides, 2001), and, since the domain [0, 1] is compact, Theorem 1.22
in Braides (2001) ensures that

lim
n→+∞
σ→0

(
inf

0≤t≤1
‖R̂n(t)‖ − inf

0≤t≤1
‖R(t)‖

)
= 0.

While the compactness given by the Γ-convergence guarantees the consistency of the ap-
proximation to an optimal parameter, it is much harder for arbitrary A to provide an error
bound, depending on n. For the case A = I in Section 4 we are able to establish very precise
quantitative bounds with high probability.

Remark 9 Under the conditions of Theorem 7 for all i = 1, . . . , d it holds as well

|ξi − ξ̂i| .
1

σi
B(n, τ, σ)

|νi − ν̂i| . B(n, τ, σ).

These bounds are a direct consequence of Theorem 7.

The following theorem is about the uniform approximation to the derivative function H(t).

Theorem 10 Given τ > 0, with probability greater than 1− 10e−τ
2
,

sup
0≤t≤1

|Ĥn(t)−H(t)| . B(n, τ, σ)

(
1

σ3p
(
√
h+ τ) +

σ

σ4d
(
√
d+ τ)

)
provided that n and σ satisfy (26), where p is defined in (9).

Proof Equations (21) and (31) give

Ĥn(t)−H(t) = 〈R̂n(t)−R(t), R′(t)〉

= 〈(Π− Π̂n)Y −Πη, (AT )−1B(t)−2ATY 〉

= 〈(Π− Π̂n)Y −Πη, (tAAT + (1− t)I)−2QY 〉,

where we observe that tAAT + (1− t)I is invertible on ranQ. Hence,

|Ĥn(t)−H(t)| ≤ ‖(Π− Π̂n)Y −Πη‖×
×
(
‖(tAAT + (1− t)I)−2AX‖+ σ‖(tAAT + (1− t)I)−2QW‖

)
.

Furthermore, recalling that AX = ΠAX and Πui = 0 for all i > p, (27) implies that

‖(tAAT + (1− t)I)−2AX‖ ≤ σp
(tσ2p + (1− t))2

‖X‖ . 1

σ3p
(
√
h+ τ)

‖(tAAT + (1− t)I)−2QW‖ ≤ 1

(tσ2d + (1− t))2
‖QW‖ . 1

σ4d
(
√
d+ τ)
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hold with probability greater than 1− 4e−τ
2
. Bound (28) provides the desired claim.

The uniform approximation result of Theorem 10 allows us to claim that any t̂n ∈ [0, 1]
such that Ĥn(t̂n) = 0 can be attempted as a proxy for the optimal parameter t∗, especially
if it is the only root in the interval (0, 1).

Nevertheless, being Ĥn a sum of d rational functions of polynomial numerator of degree 1
and polynomial denominator of degree 3, the computation of its zeros in [0, 1] is equivalent
to the computation of the roots of a polynomial of degree 3(d − 1) + 1 = 3d − 2. The
computation cannot be done analytically for d > 2, because it would require the solution
of a polynomial equation of degree larger than 4. For d > 2, we are forced to use numerical
methods, but this is not a great deal as by now there are plenty of stable and reliable
routines to perform such a task (for instance, Newton method, numerical computation of
the eigenvalues of the companion matrix, just to mention a few).

We provide below relatively simple numerical experiments to validate the theoretical
results reported above. In Figure 2 we show optimal parameters t∗ and corresponding ap-
proximations t̂n (computed by numerical solution to the scalar nonlinear equation Ĥn(t) = 0
on [0, 1]), for n different data Y = AX+η. The accordance of the two parameters t∗ and t̂n
is visually very convincing and their statistical (empirical) distributions reported in Figure
3 are also very close.

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

Figure 2: Optimal parameters t∗ and corresponding approximations t̂n for 50 different data
Y = AX + η for X ∈ Rd and η ∈ Rm Gaussian vectors, d = 200, m = 60
and A ∈ R60×200. Here we assumed that X ∈ V for V = span{e1, . . . , e5}. We
designed the matrix in such a way that the spectrum is vanishing, i.e., σmin ≈ 0.
Here we considered as noise level σ = 0.03, so that the optimal parameter t∗ is
rather concentrated around 0.7. The accordance of the two parameters t∗ and t̂n
is visually very convincing.

In the next two sections we discuss special cases where we can provide even more precise
statements and explicit bounds.
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Figure 3: Empirical distribution of the optimal parameters t∗ (left) and the corresponding
empirical distribution of the approximating parameters t̂n (right) for 1000 ran-
domly generated data Y = AX + η with the same noise level. The statistical
accordance of the two parameters t∗ and t̂n is shown.

4. The case A = I

As an example, we consider the simple case where m = d and A = I, so that W = V. In
this case, we get that

R(t) = −(1− t)X + tη.

If Y 6= 0, an easy computation shows that the minimizer of the reconstruction error ‖R(t)‖2
is

t∗ = t∗(Y,X) = ϕ

(
〈Y,X〉
〈Y, Y 〉

)
, (32)

where

ϕ(s) =


0 if s ≤ 0

s if 0 < s < 1

1 if s ≥ 1

.

If Y = 0, the solution Zt does not depend on t, so that there is not a unique optimal
parameter and we set t∗ = 0.

We further assume that X is bounded from 0 with high probability, more precisely,

P[‖X‖ < r] ≤ 2 exp

(
− 1

r2

)
. (33)

This assumption is necessary to avoid that the noise is much bigger than the signal.

Theorem 11 Given τ ≥ 1, with probability greater than 1− 5e−τ
2

|t̂n − t∗| ≤
1

λmin

(√
d

n
+

τ√
n

+ σ2

)
+ σ ln

( e

σ

)
(
√
h+ τ), (34)
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provided that

n & (
√
d+ τ)2 max

{
64

λ2min

, 1

}
(35a)

σ < min

{√
λmin

8
, e1−16τ

2

}
. (35b)

Proof Without loss of generality, we assume that λmin ≤ 8. Furthermore, on the event
{Y = 0}, by definition t∗ = t̂n = 0, so that we can further assume that Y 6= 0.

Since ϕ is a Lipschitz continuous function with Lipschitz constant 1,

|t̂n − t∗| ≤
|〈Y, X̂ −X〉|
‖Y ‖2

≤ ‖(Π− Π̂n)Y −Πη‖
‖Y ‖

≤ ‖(Π− Π̂n)‖+ σ
‖ΠW‖
‖Y ‖

,

where the second inequality is consequence of (30). Since (35a) and (35b) imply (26) and
m = d, by (25) we get

‖Π̂n −Π‖ . 1

λmin

(√
d

n
+

τ√
n

+ σ2

)

with probability greater than 1 − 2e−τ
2
. It is now convenient to denote the probability

distribution of X as ρX , i.e., X ∼ ρX . Fixed r > 0, set

Ω = {‖X‖ < r} ∪ {2σ〈X,W 〉 < −‖X‖2/2},

whose probability is bounded by

P[Ω] ≤ P[‖X‖ < r] + P[4σ〈X,W 〉 < −‖X‖2, X ≥ r]

= P[‖X‖ < r] +

∫
‖x‖≥r

P[4σ〈x,W 〉 < −‖x‖2] dρX(x)

≤ P[‖X‖ < r] +

∫
‖x‖≥r

exp

(
− ‖x‖

2

256σ2

)
dρX(x)

≤ P[‖X‖ < r] + exp

(
− r2

256σ2

)
,

where we use (38c) with ξ = −W (and the fact that W and X are independent), τ =
‖x‖/(16σ) and ‖W‖ψ2 = 1/

√
2. With the choice r = 16τ/ ln(e/σ), we obtain

P[Ω] ≤ P[‖X‖ < 16τ/ ln(e/σ)] + exp

(
− τ2

σ2 ln2(e/σ)

)
≤ P[‖X‖ < 16τ/ ln(e/σ)] + exp(−τ2),
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where σ 7→ σ ln(e/σ) is an increasing positive function on (0, 1], so that it is bounded by 1.
Furthermore, by (35b), i.e., 16τ/ ln(e/σ) ≤ 1

τ , we have

P[‖X‖ < 16τ/ ln(e/σ)] ≤ P [‖X‖ < 1

τ
] ≤ 2 exp(−τ2),

by Assumption (33).
On the event Ωc

‖Y ‖2 = ‖X‖2 + 2σ〈X,W 〉+ σ2‖W‖2

≥ ‖X‖2 + 2σ〈X,W 〉 ≥ ‖X‖2/2
≥ r2/2 ' τ2/ ln2(e/σ) ≥ 1/ ln2(e/σ)

since τ ≥ 1. Finally, (40) with ξ = ΠW ∈ W yields

‖ΠW‖ . (
√
h+ τ)

with probability greater than 1 − exp(−τ2). Taking into account the above estimates, we
conclude with probability greater than 1− 3 exp(−τ2) that

‖ΠW‖
‖Y ‖

. ln
e

σ
(
√
h+ τ).

Then, with probability greater than 1− 5 exp(−τ2), we conclude the estimate

|t̂n − t∗| .
1

λmin

(√
d

n
+

τ√
n

+ σ2

)
+ σ ln(e/σ)(

√
h+ τ).

Remark 12 The function ln(e/σ) can be replaced by any positive function f(σ) such that
σf(σ) is an infinitesimal function bounded by 1 in the interval (0, 1]. The condition (35b)
becomes

σ < min

{√
λmin

8
, 1

}
f(σ) ≥ 16τ2,

and, if f is strictly decreasing,

σ < min

{√
λmin

8
, 1, f−1(16τ2)

}
.

Theorem 11 shows that if the number n of examples is large enough and the noise level
is small enough, the estimator t̂n is a good approximation of the optimal value t∗. Let us
stress very much that the number n of samples needed to achieve a good accuracy depends
at most algebraically on the dimension d, more precisely n = O(d). Hence, in this case
one does not incur in the curse of dimensionality. Moreover, the second term of the error
estimate (34) gets smaller for smaller dimensionality h.
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Remark 13 If there exists an orthonormal basis (ei)i of Rd, such that the random variables
〈W, e1〉, . . . , 〈W, ed〉 are independent with E[〈W, e1〉2] = 1, then Rudelson and Vershynin
(2013, Theorem 2.1) showed that ‖W‖ concentrates around

√
d with high probability. Rea-

soning as in the proof of Theorem 11, by replacing ‖X‖2 with σ2‖W‖2, with high probability
it holds that

|t̂n − t∗| .
1

λmin

(√
d

n
+

τ√
n

+ σ2

)
+

1√
d

(
√
h+ τ)

τ√
d

without assuming condition (33).

In Figures 4–7, we show examples of numerical accordance between optimal and esti-
mated regularization parameters. In this case, the agreement between optimal parameter
t∗ and learned parameter t̂n is overwhelming.
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Figure 4: Optimal parameters t∗ and corresponding approximations t̂n for 50 different data
Y = X + η for X and η generated randomly with Gaussian distributions in Rd
for d = 1000. We assume that X ∈ V for V = span{e1, . . . , e5}.

5. An explicit formula by linearization

While it is not possible to solve the equationH(t) ≈ Ĥn(t) = 0 by analytic methods for d > 2
in the general case, one might attempt a linearization of this equation in certain regimes. It
is well-known that the optimal Tikhonov regularization parameter α∗ = (1−t∗)/t∗ converges
to 0 for vanishing noise level and this means that t∗ = t∗(σ) → 1 as σ → 0. Hence, if the
matrix A has a significant spectral gap, i.e., σ1 ≥ σ2 ≥ · · · ≥ σd � 0 and σ ≈ 0 is small
enough, then

σi � (1− t∗), (36)

and in this case

ĥi(t) =
(σiν̂iξ̂

−1
i + 1)t− 1

((1− t) + tσ2i )
3
≈

(σiν̂iξ̂
−1
i + 1)t− 1

σ6i
, t ≈ t∗.
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Figure 5: Empirical distribution of the optimal parameters t∗ (left) and the correspond-
ing empirical distribution of the learned parameters t̂n (right) for 500 randomly
generated data Y = X + η with the same noise level.

The above linear approximation is equivalent to replacing B(t)−1 with B(1)−1 = (ATA)−1

and Equation (22) is replaced by the following proxy (at least if t ≈ t∗)

Ĥ lin
n (t) = 〈tAAT (Y − Π̂nY )− (1− t)Π̂nY , (AA

T )†3Y 〉

= 〈A(ATA)−3(−(1− t)X̂ + tAT η̂), AX̂ + η̂)〉

=
(
〈A(ATA)−3(X̂ +AT η̂), AX̂ + η̂〉

)
t− 〈A(ATA)−3X̂, AX̂ + η̂〉

=

(
d∑
i=1

α̂i
σ5i

(σiν̂iξ̂
−1
i + 1)

)
t−

d∑
i=1

α̂i
σ5i
.

The only zero of Ĥ lin
n (t) is

t̂linn =
〈Π̂nY , (AA

T )†3Y 〉
〈AAT (Y − Π̂nY ) + Π̂nY , (AAT )†3Y 〉

= 1− 〈Y − Π̂nY , (AA
T )†2Y 〉

〈AAT (Y − Π̂nY ) + Π̂nY , (AAT )†3Y 〉

=
〈A(ATA)−3X̂, AX̂ + η̂〉

〈A(ATA)−3(X̂ +AT η̂), AX̂ + η̂〉

= 1− 〈(AAT )†2η̂, AX̂ + η̂〉
〈A(ATA)−3(X̂ +AT η̂), AX̂ + η̂〉

=

∑d
i=1 σ

−5
i α̂i∑d

i=1 σ
−5
i α̂i(σiν̂iξ̂

−1
i + 1)

= 1−
∑d

i=1 σ
−4
i α̂iν̂i∑d

i=1 σ
−5
i α̂i(σiν̂iξ̂

−1
i + 1)

.

In Figure 6, we present the comparison between optimal parameters t∗ and their approxi-
mations t̂linn . Despite the fact that the gap between σd and 1− t∗ is not as large as requested
in (36), the agreement between t∗ and t̂linn keeps rather satisfactory. In Figure 7, we report
the empirical distributions of the parameters, showing essentially their agreement.
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Figure 6: Optimal parameters t∗ and corresponding approximations t̂n for 50 different data
Y = AX + η for X and η generated as for the experiment of Figure 2. Here we
considered a noise level σ = 0.006, so that the optimal parameter t∗ can be very
close to 0.5 and the minimal singular value of A is σd ≈ 0.7.
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Figure 7: Empirical distribution of the optimal parameters t∗ (left) and the correspond-
ing empirical distribution of the approximating parameters t̂linn (right) for 1000
randomly generated data Y = AX + η with the same higher noise level. The
statistical accordance of the two parameters t∗ and t̂linn is shown.

6. A glimps to future directions

Motivated by the challenge of the regularization parameter choice/learning relevant for
many inverse problems in real-life, in this paper we presented a method to determine the
parameter, based on the usage of a supervised machine learning framework. Under the
assumption that the solution of the inverse problem is distributed sub-gaussianly over a
small dimensional linear subspace V and the noise is also sub-gaussian, we provided a
rigorous theoretical justification for the learning procedure of the function, which maps
given noisy data into an optimal Tikhonov regularization parameter. We also presented
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and discussed explicit bounds for special cases and provided techniques for the practical
implementation of the method.

Our current efforts are devoted to the extension of the analysis to the case where the un-
derlying space V is actually a smooth lower-dimensional nonlinear manifold. This extension
will be realized by firstly approximating the nonlinear manifold locally on a proper decom-
position by means of affine spaces as proposed in (Chen et al., 2013) and then applying our
presented results on those local linear approximations.

Another interesting future direction consists of extending the approach to sets V, unions
of linear subspaces as in the case of solutions expressible sparsely the respect to certain
dictionaries. In this situation, one would need to consider different regularization techniques
and possibly non-convex non-smooth penalty quasi-norms.

For the sake of providing a first glimps on the feasibility of the latter possible extension,
we consider below the problem of image denoising. In particular, as a simple example of
the image denoising algorithm, we consider the wavelet shrinkage (Donoho and Johnstone,
1994): given a noisy image Y = X +σW (already expressed in wavelet coordinates), where
σ is the level of Gaussian noise, the denoised image is obtained by

Zα = Sα(X) = arg min
Z
‖Z − Y ‖2 + 2α‖Z‖`1 ,

where ‖ ·‖`1 denotes the `1 norm, which promotes a sparse representation of the image with
respect to a wavelet decomposition. Here, as earlier, we are interested in learning the high-
dimensional function mapping noisy images X into their optimal shrinkage parameters, i.e.,
an optimal solution of ‖Zα −X‖2 → minα.

Employing a properly modified version of the procedure described in this paper, we
are obtaining very exciting and promising results, in particular that the optimal shrinkage
parameter α essentially depends nonlinearly on very few (actually 1 or 2) linear evaluations
of Y . This is not a new observation and it is a data-driven verification of the well-known
results of (Donoho and Johnstone, 1994) and (Chambolle et al., 1998), establishing that the
optimal parameter depends essentially on two meta-features of the noisy image, i.e., the
noise level and its Besov regularity. In Figure 8 and Figure 9 we present the numerical results
for wavelet shrinkage, which show that our approach chooses a nearly optimal parameter
in terms of peak signal-to-noise ratio (PSNR) and visual quality of the denoising.
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Figure 8: Numerical Experiments for Wavelet Shrinkage

Appendix A. Perturbation result for compact operators

We recall the following perturbation result for compact operators in Hilbert spaces (Anselone,
1971) and (Zwald and Blanchard, 2006, Theorem 3), whose proof also holds without the
assumption that the spectrum is simple (see Rosasco et al., 2010, Theorem 20).

Proposition 14 Let A and B be two compact positive operators on a Hilbert space H and
denote by (αj)

N
j=1 and (βm)Mm=1 the corresponding families of (distinct) strictly positive

eigenvalues of A and B ordered in a decreasing way. For all 1 ≤ j ≤ N , denote by Pj (resp.
Qm with 1 ≤ m ≤ M) the projection onto the vector space spanned by the eigenvectors of
A (resp. B) whose eigenvalues are greater or equal than αj (respect. βm). Let j ≤ N such
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Figure 9: PSNR between the ground truth image and its noisy version (green line); the
ground truth and its denoised version with the optimal parameter (blue line) and
the learned parameter (red line). The results are presented for 60 random images

that ‖A − B‖ < αj−αj+1

4 , then there exists m ≤M so that

βm+1 <
αj + αj+1

2
< βm

‖Qj − Pm‖ ≤
2

αj − αj+1
‖A − B‖ (37)

dimPjH = dimQmH.

If A and B are Hilbert-Schmidt, the operator norm in the above bound can be replaced by
the Hilbert-Schmidt norm.

In the above proposition, if N or M are finite, αN+1 = 0 or βM+1 = 0.

Appendix B. Sub-gaussian vectors

We recall some facts about sub-gaussian random vectors and we follow the presentation in
(Vershynin, 2012), which provides the proofs of the main results in Lemma 5.5.
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Proposition 15 Let ξ be a sub-gaussian random vector in Rd. Then for all τ > 0

P[|〈ξ, v〉| > 3‖ξ‖ψ2‖v‖τ ] ≤ 2 exp(−τ2). (38a)

Under the further assumption that ξ is centered, then

E[exp(τ〈ξ, v〉)] ≤ exp
(
8τ2‖ξ‖2ψ2

)
, (38b)

and for all τ > 0
P[〈ξ, v〉 > 4

√
2‖ξ‖ψ2‖v‖τ ] ≤ exp(−τ2). (38c)

Proof We follow the idea in Vershynin (2012, Lemma 5.5) of explicitly computing the
constants. By rescaling ξ to ξ/‖ξ‖ψ2 , we can assume that ‖ξ‖ψ2 = 1.

Let c > 0 be a small constant to be fixed. Given, v ∈ Sd−1, set χ = 〈ξ, v〉, which is a
real sub-gaussian vector. By Markov inequality,

P[|χ| > τ ] = P[c|χ|2 > cτ2] = P[exp(c|χ|2) > exp(cτ2)]

≤ E[exp(c|χ|2)]e−cτ2 .

By (5), we get

E[exp(c|χ|2)] = 1 +

+∞∑
k=1

ck

k!
E[|χ|2k] ≤ 1 +

+∞∑
k=1

(2ck)k

k!
≤ 1 +

1

e

+∞∑
k=1

(2ce)k = 1 +
2c

1− 2ce
,

where we use the estimate k! ≥ e(k/e)k for k ≥ 1. Setting c = 1/9, 1 + 2c
1−2ce < 2, so that

P[|χ| > 3τ ] ≤ 2 exp(−τ2).

Assume now that E[ξ] = 0. By (5.8) in Vershynin (2012)

E[exp(
τ

e
χ)] ≤ 1 +

+∞∑
k=2

(
|τ |√
k

)k
,

and by (5.9) in Vershynin (2012)

exp

(
τ2M2

2e2

)
= exp

(
τ2C2

)
≥ 1 +

∑
h=2

(
C|τ |√
h

)2h

M =
√

2eC.

If |τ | ≤ 1, fix an even k ≥ 2 and set h = k/2, then the k-th and (k+ 1)-th terms of the first
series (

|τ |√
k

)k
+

(
|τ |√
k + 1

)k+1

≤ 2

(
|τ |√
k

)k
can be bounded by the h-th term of the second series(

C|τ |√
h

)2h

=

(√
2C|τ |√
k

)k
,
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provided that C > 1. If |τ | ≥ 1, fix an odd k ≥ 3 and set h = (k + 1)/2, then the k-th and
(k + 1)-th terms of the first series(

|τ |√
k

)k
+

(
|τ |√
k + 1

)k+1

≤ 2

(
|τ |√
k + 1

)k+1

can be bounded by the h-th term of the second series

(
C|τ |√
h

)2h

=

(√
2C|τ |√
k + 1

)k+1

,

provided that

C ≥ 2
1
4

2

√
4

3
≥ 2

1
k+1

2

√
k + 1

k
,

which means that we can use M = 4 ≥ (
√

22
1
4 e)/
√

3.

Finally, reasoning as in the proof of (38a) and by using (38b)

P[χ > τ ] = P [exp(cχ) > exp(cτ)]

≤ E[exp(cχ)]e−cτ

≤ exp(8c2 − cτ),

which takes the minimum at c = τ/16. Hence,

P[χ > τ ] = exp(−τ
2

32
).

Remark 16 Both (38a) and (38b) (for a suitable constants instead of ‖ξ‖ψ2) are suffi-
cient conditions for sub-gaussianity and (38b) implies that E[ξ] = 0, see (Vershynin, 2012,
Lemma 5.5).

The following proposition bounds the Euclidean norm of a sub-gaussian vector. The
proof is standard and essentially based on the results in Vershynin (2012), but we were not
able to find the precise reference. The centered case is done in Rigolet (2015).

Proposition 17 Let ξ a sub-gaussian random vector in Rd. Given τ > 0 with probability
greater than 1− 2e−τ

2

‖ξ‖ ≤ 3‖ξ‖ψ2(
√

6d+ 2τ) ≤ 9‖ξ‖ψ2(
√
d+ τ). (39)

If E[ξ] = 0, then with probability greater than 1− e−τ
2

‖ξ‖ ≤ 8‖ξ‖ψ2(
√

3d+
√

2τ) ≤ 16‖ξ‖ψ2(
√
d+ τ). (40)
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Proof As usual we assume that ‖ξ‖ψ2 = 1. Let N be a 1/2-net of Sd−1. Lemmas 5.2
and 5.3 in Vershynin (2012) give

‖ξ‖ ≤ 2 max
v∈N
〈ξ, v〉 |N | ≤ 5d.

Fixed v ∈ N , (38a) gives that

P[|〈ξ, v〉| > 3t] ≤ 2 exp(−t2).

By union bound

P[‖ξ‖ > 6t] ≤ P[max
v∈N
|〈ξ, v〉| > 3t] ≤ 2|N | exp(−t2) ≤ 2 exp(ln(5)d− t2).

Setting t =
√
τ +

√
3d/2, so that t2 − ln(5) > τ2, we prove the claim.

Assume that ξ is centered and use (38c) instead of (38a). Then

P[‖ξ‖ > 8
√

2t] ≤ P[max
v∈N
|〈ξ, v〉| > 3t] ≤ |N | exp(−t2) ≤ exp(ln(5)d− t2).

As above t =
√
τ +

√
3d/2 provides the claim.

Remark 18 Compare with Theorem 1.19 in Rigolet (2015), noting that by (38b) the pa-
rameter σ in Definition 1.2 of Rigolet (2015) is bounded by 4‖ξ‖ψ2.

The following result is a concentration inequality for the second momentum of sub-
gaussian random vector, see Theorem 5.39 and Remark 5.40 in Vershynin (2012) and foot-
note 20.

Theorem 19 Let ξ ∈ Rd be a sub-gaussian vector random vector in Rd. Given a family
ξ1, . . . , ξn of random vectors independent and identically distributed as ξ, then for τ > 0

P[‖ 1

n

n∑
i=1

ξi ⊗ ξi − E[ξ ⊗ ξ]‖ > max{δ, δ2}] ≤ 2e−τ
2

where

δ = Cξ

(√
d

n
+

τ√
n

)
,

and Cξ is a constant depending only on the sub-gaussian norm ‖ξ‖ψ2.
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