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Abstract—Quantum programs implement quantum algorithms
solving complex computational problems. Testing such programs
is challenging due to the inherent characteristics of Quantum
Computing (QC), such as the probabilistic nature and computa-
tions in superposition. However, automated and systematic testing
is needed to ensure the correct behavior of quantum programs. To
this end, we present an approach called Quito (QUantum InpuT
Output coverage) consisting of three coverage criteria defined
on the inputs and outputs of a quantum program, together with
their test generation strategies. Moreover, we define two types of
test oracles, together with a procedure to determine the passing
and failing of test suites with statistical analyses. To evaluate the
cost-effectiveness of the three coverage criteria, we conducted
experiments with five quantum programs. We used mutation
analysis to determine the coverage criteria’ effectiveness and
cost in terms of the number of test cases. Based on the results
of mutation analysis, we also identified equivalent mutants for
quantum programs.

Index Terms—quantum programs, software testing, coverage
criteria, mutation analysis

I. INTRODUCTION

Quantum computing (QC) has the potential to solve pro-
foundly complex computational problems of societal and in-
dustrial nature. Researchers and industry are increasingly rec-
ognizing such QC potential as evident with the increased num-
ber of QC platforms. Notable QC platforms include Microsoft
Quantum computing platform1, IBM Quantum Experience2,
and D-Wave Leap™ platform3. Several quantum programming
languages also exist to enable programming quantum comput-
ers such as Microsoft’s Q#, and IBM’s Qiskit [1].

Building QC applications relies on implementing quantum
algorithms as quantum programs in quantum programming
languages. To ensure the correct implementation of a quantum
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program, automated and systematic testing is a natural choice.
However, testing quantum programs is challenging for several
reasons, such as the QC’s probabilistic nature and difficulties
in estimating a quantum program’s state in superposition [2].

Researchers have identified testing challenges of quantum
programs, and some testing methods have started to emerge as
surveyed in [3]. The notable recent work of Honarvar et al. [4],
named as QSharpCheck, is closely related to the work we
present in this paper. QSharpCheck is a property-based testing
approach for testing quantum programs written in Q#, which
includes the definition of a property specification language and
a testing method to generate and execute test cases.

Following the direction of the work by Honarvar et. al. [4],
we define three coverage criteria on inputs and outputs of a
quantum program. Defining such coverage criteria is one of
the key contributions of this paper as compared to the work by
Honarvar et. al. [4]. In our approach, each coverage criterion
is also complemented with a test generation and execution
algorithm to test a quantum program. We call our approach
Quito (QUantum InpuT Output coverage). Moreover, Quito
defines two types of test oracles and a procedure to determine
the passing and failing of a test suite based on statistical
analyses to deal with the quantum programs’ probabilistic
nature.

To assess the cost-effectiveness of the coverage criteria, we
experimented with five quantum programs. We used mutation
analysis for quantum programs to measure the effectiveness
of a test suite corresponding to a coverage criterion. Given
the differences in mutation analysis for quantum programs
compared to classical programs, we also highlighted their
differences followed by performing mutation analysis for the
two types of test oracles. Finally, as the result of test execution,
we also identified equivalent mutants for quantum programs.

The paper is organized as follows: We compare our work
with related works in Section II. Section III presents the
necessary background and a running example. Section IV
defines test oracle types, coverage criteria, and test generation
algorithms. Section V presents mutation analysis to assess
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the criteria’ effectiveness. Section VI presents the design of
experiments, whereas results and discussion are presented in
Section VII. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

The potential of QC to solve complex problems and bring
scientific and technological breakthroughs has been well
recognized [5], [6]. Researchers have started to investigate
the feasibility of applying QC for addressing challenges on
software/system verification and validation. A research group
from the University of Technology Sydney [7] is conducting
research on modeling and verifying quantum programs in
terms of their correctness, with the focus on developing model
checkers for quantum Markov chains, etc. Differently from
the above studies, we focus on testing quantum programs
written in high-level quantum programming languages (e.g.,
Q#), rather than verifying them with formal methods.

Most relevantly, Wang et al. [8] proposed QuanFuzz, a
search-based test input generator for quantum software. Quan-
Fuzz first statically extracts quantum-sensitive information,
such as quantum register measurement and sensitive branches,
from a quantum program. Then, it relies on a grey-box fuzz
testing model to generate inputs to change the state of quantum
registers and maximize the coverage. QuanFuzz was evaluated
with seven benchmark quantum programs and compared with
a random generator. Results show that QuanFuzz is more
effective in terms of triggering sensitive branches than the
random generator and traditional branch coverage guided
search-based test case generation techniques.

A comprehensive survey on quantum software engineering,
with a particular focus on the whole life cycle of quantum
software development [3], has been recently conducted. Re-
sults show that few researchers have already initiated the
effort of identifying bug types (e.g., incorrect quantum initial
values, incorrect operations, and transformations) [9], and
defining and specifying assertions in quantum software as
invariants [10], pre- and post-conditions [11], or constructing
assertion operations (e.g., AssertProbability [4]).

QSharpCheck [4] was recently proposed by Honarvar et. al.
for testing quantum software in Q#. As part of QSharpCheck,
the authors proposed a test property specification language for
Q# programs, and a property-based testing method for gener-
ating and executing test cases, and analyzing test results. A
test property specification contains the information of number
of test cases to generate (10 by default), predefined confidence
level (0.99 by default), number of measurements (350 by
default), and number of experiments (300 by default). The
confidence level is needed for the statistical method embedded
in QSharpCheck as the basis to perform statistical test on
obtained test data. QSharpCheck is also equipped with five
assertion types, such as AssertProbability and AssertEntan-
gled, some of which are program specific such as AssertTele-
ported specific to quantum teleportation. The effectiveness of
QSharpCheck was evaluated with two examples via mutation
analysis and results show that QSharpCheck achieved 80%
and 60% of mutation scores for the two examples.

1 qc.reset(2); //Reserve two qubits
2
3 // Creating two qubits
4 var qubit1 = qint.new(1, ’Qubit1’);
5 var qubit2 = qint.new(1, ’Qubit2’);
6
7 qc.write(0); //Initializing to 0
8
9 qc.label("Entangle Qubits");

10 qubit1.had(); // Put qubit1 in superposition
11 qubit2.cnot(qubit1); // Entangle the two qubits
12 qc.label();
13
14 qc.nop();
15 var result = qc.read(); // Read both qubits
16
17 qc.print(result); //Output qubits values

Listing 1: Running example – Javascript code

As compared to QuanFuzz and QSharpCheck, our key
contributions are: 1) We initiate the definition of three testing
coverage criteria, which are independent of specific quantum
programming languages and applications; 2) For each defined
testing coverage criterion, we propose an algorithm to generate
a test suite for a quantum program, to reach the full coverage,
during the test execution; and 3) We define two test oracles
independent of any quantum programming language and ap-
plication. Based on the test oracles, we assess test execution
results automatically with the help of statistical tests such as
the Wilcoxon test.

III. BACKGROUND AND RUNNING EXAMPLE

A quantum program works on quantum bits, or qubits in
short, as opposed to bits in the context of classical computers.
A classical bit takes either value 0 or 1. For example, all
the possible states of two classical bits are 00, 10, 01 and
11. In contrast, a quantum state can be defined based on two
elements; (1) a value, which is one of the permutations of
quantum bits values, i.e., same as classical bits. For example,
for two quantum bits, we have four possible values; (2) an am-
plitude (α)—a complex number. For example, two qubits can
be represented in the bra-ket/Dirac notation [12] (a commonly
used notation for specifying quantum states [13]) as:

α0 |00〉+ α1 |10〉+ α2 |01〉+ α3 |11〉

Here, α0, α1, α2, and α3 are the amplitudes associated
with each of the states. The square of the absolute value
of amplitudes (e.g., |α0|2) determines the probability of a
quantum program being in this state, if the qubits are read.
Also, the follow relationship holds:

|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1

An example of quantum program with two qubits is shown
in Listing 1. This program is about quantum entanglement,
i.e., the program entangles Qubit1 with Qubit2, implying that
when their values are read, they will always be the same, i.e.,
either both 0’s or both 1’s. The quantum program is written in



Fig. 1: Running example – Circuit diagram

(a) After the execution of Line 7 (b) After the execution of Line 10

(c) After the execution of Line 11 (d) After the execution of Line 15
(one of the possible states)

(e) After the execution of Line 15
(one of the possible states)

Fig. 2: Running example – Evolution of program states in the
circle notation

the QCEngine’s Javascript-based language and is an example
from the book [13].

The equivalent circuit diagram of the program is shown in
Figure 1, which is also taken from the book [13]. In Listing 1,
Line 1 registers two qubits, Lines 4-5 create the two qubits
(i.e., Qubit1 and Qubit2), and Line 7 initializes the qubits
to the 0 state. The state of the quantum program after the
execution of Line 7 is shown in Figure 2a in the circle notation
from [13]. Since there are two qubits, there are four possible
values of qubits, i.e., 00, 10, 01, 11 (shown in decimal as |0〉,
|1〉, |2〉, and |3〉 in Figure 2 in the bra-ket notation [13]). In
the circle notation, the magnitude of a state is represented as
a filled circle inside a circle indicating the probability of the
program being in that particular state, if the qubits are read.
At this stage, the program is in state 0, as shown in Figure 2a.

One of the key differences of quantum programs with
classical programs is that at any given point of time, a quantum
program can be in superposition. To put a quantum program
in superposition, we apply the Hadamard operation [13] on
quantum bits. Line 10 of the code in Listing 1 shows that
we applied the Hadamard operation to qubit 1, which is also
shown as an H gate on the circuit diagram (Figure 1). After the
execution of Line 10, the program will be in a superposition
state, and the state is represented in the circle notation in
Figure 2b. In the figure, the 0 and 1 states have the filled
circles of the same size. This means that there is an equal
probability that the quantum program is in any of these two
states. Another property of a quantum state is phase, which is
shown as a line inside the circle. The phase ranges from the 0.0

to 360.0 degrees. For instance, the phase of the circle labeled
with |0〉 in Figure 2b is 0 degrees. In this paper, we don’t
consider testing the phases of a quantum program. This will
be part of our future work. Therefore, we don’t discuss phases
further in this paper. Interested readers may consult [13].

Line 11 in Listing 1 entangles the two qubits using the
conditional not (CNOT) gate, shown as the gate on the qubits
right after the H gate in the circuit diagram (Figure 1). After
the execution of Line 11, the state of the program is shown in
Figure 2c, indicating that the program is in the superposition
of 0 and 3 with equal probability. In other words, if we read
the qubits, for instance using the read() operation (Line 15),
there is a 50% probability that we will observe 3 as output
(Figure 2d) and a 50% probability that we will observe 0 as
output (Figure 2e). Note that the read() and write() operations
destroy superpositions. Thus, to fully utilize the power of
quantum computing, most of the computation is performed
when qubits are in superposition.

In this paper, we test a quantum program as a black-box,
i.e, we set the initial state of the program by assigning values
to registered qubits (e.g., Figure 2a). Also, we only check the
state of the program at the end of its execution by reading
values of qubits (e.g., Figure 2d and Figure 2e). Therefore,
during a test execution, we don’t interfere with any change
of any state in superposition of the program (e.g., Figure 2b
and Figure 2c), since doing so would destroy the superposition.
However, we acknowledge that there might exist indirect ways
to estimate superposition states (including magnitudes and
phases) of a program without destroying them [13]. We will
investigate these ways in the future work.

IV. TEST ORACLES AND COVERAGE CRITERIA

In this section, we first provide necessary definitions (Sec-
tion IV-A), based on which we then present the proposed test
oracles (Section IV-B), coverage criteria (Section IV-C), and
testing process (Section IV-D) of Quito.

A. Definitions

Definition 1 (Inputs and outputs). Let Q = {q1, . . . , qn} be
the set of qubits of the quantum program QP. All the qubits
in Q are considered as inputs. Instead, only a subset of qubits
O identify the output, i.e., O ⊆ Q. We define DI = B|Q| as
the set of input values, and DO = B|O| as the set of output
values.

In the following, we will report input and output values in
their decimal representation.

Definition 2 (Quantum program). A quantum program QP
can then be defined as a function QP : DI → 2DO .

Note that a quantum program, given the same input value,
can return different output values. Each possible output value
is produced with a certain probability.

The program specification specifies preconditions on the
allowed input values and the expected probabilities of occur-
rences of the output values, as described in Def. 3.



Definition 3 (Program specification). Given a quantum pro-
gram QP : DI → 2DO , we identify the expected behavior of
the program in PS, i.e., the program specification. First of
all, PS identifies a subset of input values VDI ⊆ DI (i.e.,
valid input values) for which the program computation makes
sense; therefore, the program should not be executed with
invalid input values DI \ VDI (it is a kind of precondition).
Then, for each valid input assignment i ∈ VDI , the program
specification states the expected probabilities of occurrences
of all the output values o ∈ DO:

PS(i) = {(o1, p1), . . . , (o|DO|, p|DO|)}

where (oh, ph) indicates that value oh can be produced with
probability ph by input value i (with 0 ≤ ph ≤ 1); it holds∑|DO|

h=1 ph = 1. We further write PS(〈i, oh〉) = ph to specify
the probability of occurrence of output value oh for input value
i.

The definition of program specification leads also to the
definition of the valid output values that can be produced by
the program.

Definition 4 (Valid output values). The set of valid output
values is the set of output values that, according to the program
specification, can be produced at least by an input value.
Formally:

VDO = {o ∈ DO | (∃i ∈ DI : PS(〈i, o〉) 6= 0)}

Definition 5 (Test input, test outcome, and test suite). A test
input t is a valid assignment to the qubits, i.e., t ∈ VDI . A test
outcome is defined by the pair 〈t, res〉, where res = QP(t)
is the output value returned by the program for t in a given
execution. A test suite TS is a set of test outcomes.4

Recall that QP(t) could return different values in different
executions (see Def. 2). Therefore, we need test oracles and
coverage criteria specific for quantum programs.

B. Test Oracles

The assessment of a test suite for quantum programs is
different from a classical and deterministic program, and it
must take into account the probabilistic nature of quantum
programs. In a classical deterministic program, a test fails if
a given assertion (during execution and/or on the output) is
violated, while passes if all the assertions hold. In a quantum
program, a test suite could have three outcomes:
• definitely fail. In this case, the outcome of the program

clearly shows a failure (e.g., the program returns a value
that is not a valid output value);

• likely fail, with a given confidence. In this case, multiple
executions of the test seem to show that a desired property
does not hold. For example, after executing the program
multiple times with a valid input value i, which should
produce a valid output o with a given probability p, we
observe o with a probability p′ that significantly deviates

4Note that our definition of test suites is different from the classical
definition, as we consider the obtained result as part of the test suite.

from p according to a statistical test. Such a statistical
test can, to a certain extent, tell us the confidence that
the real occurrence probability is really different from p;
if we can reject the null hypothesis of the statistical test,
we say that the test suite fails with a given confidence.

• inconclusive. In this case, multiple executions of the
test do not allow to reject the null hypothesis of a
statistical test. Therefore, we cannot claim anything about
the failure of the test, and we say that it is inconclusive.

Following the previous considerations, we propose two
test oracles (i.e., WOO and OPO) to assess test executions
produced by the generation algorithms that will be described
in Section IV-C. These two oracles target different types of
faults: WOO checks whether a wrong output is produced, while
OPO checks whether the outputs are produced with unexpected
occurrence probabilities.

1) Wrong Output Oracle (WOO): The first oracle simply
checks that the quantum program only produces valid out-
put values. This oracle is applied by checking whether test
outcome res = QP(i) returned for test input i is invalid,
i.e., the probability of occurrence according to the program
specification (i.e., PS(〈i, res〉)) is 0. In this case, a failure of
a test is a definitely fail.

Example 1. Valid outputs for our running example are 0 and
3. If we observe another output, then it means that we observed
a wrong output. Assume that we have the following test suite:
{〈0, 0〉, 〈1, 2〉}. We can see that the output corresponding to
input 1 is 2, which is not expected, and therefore the test
assessment will return failWOO.

2) Output Probability Oracle (OPO): This oracle checks
whether the quantum program returns an expected output with
its corresponding expected probability. Since the oracle needs
to observe multiple executions of the same input to estimate
the occurrence probability, the oracle assessment is not done
on the single tests, but on a set of test suites:

T̃Ss =
{
T̃S 1, . . . , T̃SM

}
The output probability oracle is checked for each input-

output pair 〈i, o〉 such that PS(〈i, o〉) 6= 0. Given the test
suites T̃Ss = {T̃S 1, . . . , T̃SM}, we compute the input-output
occurrence as ioo(T̃Ss, 〈i, o〉) = {p1, . . . , pM}, where each
pj identifies the percentage of times that the program produces
the output o given input i in the test suite T̃S j , i.e.,

pj =
{〈x, y〉 ∈ T̃S j | x = i ∧ y = o}
{〈x, y〉 ∈ T̃S j | x = i}

The oracle assessment is then performed using a statistical
test (e.g., the one-sample Wilcoxon signed rank test); the
oracle assesses a failure if the distribution is significantly
different from the expected probability, i.e.,

failOPO(T̃Ss, 〈i, o〉) =
null hypothesis between
ioo(T̃Ss, 〈i, o〉) and PS(〈i, o〉)
is rejected



Algorithm 1 Test generation for input coverage
Require: the quantum program QP under test
Require: the program specification PS

1: TSs ← ∅ . Test suites
2: for h ∈ {1, . . . ,K} do
3: TS ← ∅ . Test suite
4: for i ∈ VDI do . Iterate over input values
5: res ← QP(i) . Program execution
6: TS ← TS ∪ {〈i, res〉}
7: if PS(〈i, res〉) = 0 then . The result is not expected
8: TSs ← TSs ∪ {TS}
9: return 〈TSs, failWOO〉 . A fault has been found

10: TSs ← TSs ∪ {TS}
11: return 〈TSs, passWOO〉

Instead, if the null hypothesis cannot be rejected, we say
that the test is inconclusive, i.e., inconOPO = ¬failOPO.

Example 2. For our running example, the program specifi-
cation states that for each valid input value (i.e., 0 and 1),
the probability of observing output value 0 is 50% and output
value 3 is also 50%. Let’s assume that we have 20 test suites.
Then, for each input-output pair 〈i, o〉, we apply the statistical
test: the input-output occurrence ioo(T̃Ss, 〈i, o〉) (composed
of 20 values) is compared with PS(〈i, o〉) (50% for all the
pairs in this example). We assume the significance level of
0.01, i.e., if the computed p-value is less than or equal to
0.01, it means that the sample is significantly different than
50% and hence the test suite is failed with a confidence level of
99%. However, if the computed p-value is greater than 0.01,
it means that there is no significant difference between the
sample and 50%, and we cannot reject the null hypothesis.

C. Coverage Criteria

In this section, we present our coverage criteria.
1) Input Coverage (IC):

Definition 6 (Input Coverage). The input coverage criterion
requires that for each valid input value i ∈ VDI , there exists
a test t = i.

In this case, the criterion can be easily achieved by statically
generating a test suite. The exact number of required tests is
|VDI |, i.e., one for each valid input. Differently from classical
and deterministic programs, a single execution of a test suite is
not sufficient to assess whether the test suite passes or fails for
some types of oracles: this is the case of the oracle OPO (Output
Probability Oracle) described in Section IV-B2 that checks
the probability of occurrences of output values. Therefore, we
generate K test suites TSs = {TS 1, . . . , TSK} (being K a
parameter of the input coverage criterion), all having the same
test inputs, but with possibly different outputs. The complete
test generation is shown in Alg. 1.

Each of the K test suites (Line 2) is generated as follows.
The algorithm iterates over the valid input values (Line 4),
executes the program with each input value (Line 5), and adds
the test input and the test result (i.e., the test outcome) to
the test suite (Line 6). If the returned output is not expected

Algorithm 2 Test generation for output coverage
Require: the quantum program QP under test
Require: the program specification PS
Require: budget BudgetOC on the generation of a single test suite

1: TSs ← ∅ . Test suites
2: for h ∈ {1, . . . ,K} do
3: TO COV ← VDO . Set of output values to cover
4: TS ← ∅ . Test suite
5: while TO COV 6= ∅ ∧ BudgetOC not expired do
6: for i ∈ VDI do . Iterate over input values
7: res ← QP(i) . Program execution
8: TS ← TS ∪ {〈i, res〉}
9: TO COV ← TO COV \ {res}

10: if PS(〈i, res〉) = 0 then . The result is not expected
11: TSs ← TSs ∪ {TS}
12: return 〈TSs, failWOO〉 . A fault has been found
13: TSs ← TSs ∪ {TS}
14: return 〈TSs, passWOO〉

for the current input, the generation stops, returning the tests
generated so far and signaling a failure (Lines 7-9); oracle WOO
(Wrong Output Oracle) checks whether a wrong output has
been returned (see Section IV-B1). Each generated test suite
is collected in the set TSs (Line 10). If no failure occurs, at
the end, the algorithm returns all the generated test suites, and
a flag signaling that no failure occurred for oracle WOO related
to wrong outputs (Line 11).

Example 3. For our running example (see Section III), the set
of valid input values are 0 and 1. Thus, one of the test suites
in TSs generated with Alg. 1 could be {〈0, 0〉, 〈1, 3〉}.

2) Output Coverage (OC):

Definition 7 (Output Coverage). The output coverage criterion
requires that each valid output value o ∈ VDO is observed at
least once, i.e., there exists a test t whose result is QP(t) = o.

Test suites for achieving the full output coverage cannot
be generated statically. This is because, with a given input
value, the program produces a specific output value o with
an expected non-zero probability, so there is no guarantee
to obtain o at a specific run (even on a correct program).
Therefore, to generate tests for the full output coverage, we
keep on generating and executing tests until all the expected
valid output values in VDO are observed at least once, or the
budget allocated to the generation expires.

As for the input coverage, also for the output coverage we
cannot rely on a single execution of tests to assess whether
they pass or fail. Therefore, also in this case, we generate
K test suites, and collect them in TSs . Differently from the
input coverage, in this case, the different test suites can contain
different test inputs. The whole test generation is described in
Alg. 2. Since the generation for a test suite may not be able to
achieve the criterion (if the program is faulty), or it could take
too much time, the algorithm requires in input also a budget
BudgetOC (e.g., time or the maximum number of tests) for the
generation of each test suite.

Each of the K test suites (Line 2) is generated as follows.



Algorithm 3 Test generation for input-output coverage
Require: the quantum program QP under test
Require: the program specification PS
Require: budget BudgetIOC on the generation of a single test suite

1: TSs ← ∅ . Test suites
2: Budget

inp
IOC ← BudgetIOC/|VDI |

3: for h ∈ {1, . . . ,K} do
4: TS ← ∅ . Test suite
5: for i ∈ VDI do . Iterate over input values
6: TO COV ← {o | PS(〈i, o〉) 6= 0} . Possible outputs
7: while TO COV 6= ∅ ∧ Budget

inp
IOC not expired do

8: res ← QP(i) . Program execution
9: TS ← TS ∪ {〈i, res〉}

10: TO COV ← TO COV \ {res}
11: if PS(〈i, res〉) = 0 then . The result is not expected
12: TSs ← TSs ∪ {TS}
13: return 〈TSs, failWOO〉 . A fault has been found
14: TSs ← TSs ∪ {TS}
15: return 〈TSs, passWOO〉

As long as a valid output value is not covered and the given
budget BudgetOC is not expired (Line 5), the algorithm keeps
on iterating over the valid input values (Line 6) and, for each
value i: it runs the program with i (Line 7), collects the test
outcome in TS (Line 8), and marks the test result as covered
(Line 9). If a wrong output is obtained, the generation stops,
and returns the tests generated so far and signals a failure
(Lines 10-12).

When all the valid output values are covered or the budget
BudgetOC expires, the test suite TS is added to the set of all
test suites (Line 13), and the generation continues with the
next test suite. In case of no failure, at the end, the set of all
test suites is returned with a flag indicating that no failure for
oracle WOO occurred (Line 14).

Example 4. For our running example presented in Section III,
the set of valid output values for the program are 0 and 3. Thus,
to generate a test suite satisfying the output coverage, we need
to create and execute test cases to observe these two valid
output values. Thus, one potential test suite may be {〈0, 0〉,
〈1, 0〉, 〈0, 0〉, 〈1, 3〉}.

3) Input-Output Coverage (IOC):

Definition 8 (Input-Output Coverage). The input-output cov-
erage criterion requires that, for each input-output pair 〈i, o〉
such that PS(〈i, o〉) 6= 0, there exists a test t = i whose result
is QP(t) = o.

Same as for the output coverage, it is not possible to
generate a test suite offline. We therefore propose a test
generation algorithm as presented in Alg. 3. Also for this
criterion, the test generation is performed K times, and there
is a budget BudgetIOC on the generation of each test suite. In
order to avoid that the generation for an input value consumes
the whole budget, the budget is divided equally among the
different input values (Line 2). For each of the K test suites
(Line 3), the generation is as follows. For each valid input
value i (Line 5), the algorithm collects all the possible output

values according to the specification (Line 6). Then, as long as
some expected output of input i is not covered and the budget
Budget

inp
IOC is not expired (Line 7), the algorithm performs

the following instructions: it runs the program with the input
value i (Line 8), collects the test outcome in TS (Line 9),
and removes the obtained output res from the list of the
outputs yet-to-be covered (Line 10). If the returned output is
not allowed, the generation stops returning the tests generated
so far and signaling a failure (Lines 11-13).

When all the expected outputs of input i are covered or
the budget expires, the loop terminates, and the algorithm
continues the generation for the next input value. At the end
of the generation for all the inputs, TS is saved in the set of
test suites (Line 14).

If no failure occurs, at the end the algorithm returns all
the generated test suites, and a flag signaling that no failure
occurred for the oracle WOO (Line 15).

Example 5. Our running example (Section III) has two valid
input values, i.e., 0 and 1. For each valid input value, valid
output values are 0 and 3. Thus, a test suite for input-output
coverage will contain test cases that ensure observing both 0
and 3 output values with each valid input value. A potential
test suite is: {〈0, 0〉, 〈0, 0〉, 〈0, 3〉, 〈1, 3〉, 〈1, 0〉}.

D. Application of the testing process

We here explain how our testing framework must be used.
Given quantum program QP having specification PS:

1) We generate a set of test suites using one of the three
coverage criteria.

2) As output, we obtain a pair 〈TSs, resWOO〉, where TSs
is the set of generated test suites, and resWOO the assess-
ment of oracle WOO, either passWOO or failWOO. If the
oracle assessment is failWOO, we obtain a failure and the
evaluation terminates.

3) Otherwise, we check oracle OPO using TSs and PS, as
described in Section IV-B2. To perform the evaluation,
we need to have sufficiently large test suites. Since the
test suites in TSs = {TS 1, . . . , TSK} may be small, we
merge some of them as follows. We identify a constant M
such that K mod M = 0; then, we merge groups of R =
K
M test suites at a time, i.e., T̃Ss =

{
T̃S 1, . . . , T̃SM

}
,

with T̃S j =
⋃

h∈{1+(j−1)·R,...,j·R} TSh (j = 1, . . . ,M ).
So the statistical test is applied to T̃Ss . The outcome of
the oracle assessment is either inconOPO or failOPO.

Therefore, the whole testing process can be described as:

TPC(QP, PS) = 〈TSs, res〉

where C ∈ {IC, OC, IOC} identifies the criterion, and res ∈
{failWOO, inconOPO, failOPO} is the assessment obtained by
the evaluation of the oracles.

V. ASSESSMENT OF THE PROPOSED COVERAGE CRITERIA
THROUGH MUTATION ANALYSIS

To assess the coverage criteria’ effectiveness in terms of
finding faults, we perform mutation analysis, which typically



(a) Add Gate (AG) (b) Delete Gate (DG)

(c) Replace Gate (RG)

Fig. 3: Examples of mutations on the running example

generates a test suite with a particular test coverage criterion
followed by executing the generated test suite on mutated
programs to see if seeded faults can be found. Mutation
analysis for evaluating the effectiveness of testing techniques
for quantum programs is not entirely new, and it was also
performed in a recent paper [4]. The process of mutation anal-
ysis is similar to the classical computing [14]; however, there
are two key differences, because executing the same test suite
more than once even on the original quantum program might
produce different results due to QC’s probabilistic nature. We
highlight the two differences below: (1) For Input Coverage,
test cases in a test suite for a mutant remain the same as for the
original program. This is the same as in the classical mutation
analysis. However, since executing the same test suite even on
the original program will produce different results, we need to
execute the same test suite for a mutant K number of times;
(2) For Output Coverage and Input-Output Coverage, the test
suite changes with each execution on a mutant. In other words,
not each execution of the same test suite on even the original
program may achieve the same coverage. Thus, for a particular
mutant and for a specific coverage, we need to generate and
execute test cases K number of times. This is different from
the classical mutation analysis, where the test suite is fixed.

We define four categories of mutation operators: Add Gate
(AG), Delete Gate (DG), Replace Gate (RG), and Replace
Mathematical Operator (RMO). The first three types are spe-
cific to quantum programs, whereas the fourth type is similar
to classical mutation operators, but adapted for quantum
programs. There could be other types of mutation operators
from classical computing, e.g., related to relational operators,
which can also be adapted to quantum programs. However,
such adaptation needs an investigation of its own.

The AG mutation operator introduces a gate on one of the
qubits of the program. For example, as shown in Figure 3a,
we added an H gate on Qubit1 before the existing H gate
of the program. The DG mutation operator deletes an existing
gate from the program. For instance, as shown in Figure 3b, we
deleted the H gate from the running example. The RG mutation
operator replaces a gate with another one. For instance, in
Figure 3c, we replaced the H gate with a Not gate. For the

RMO category, we replaced a mathematical operator with
another one. For instance, the addition is implemented as an
add() operation. We, therefore, can replace this operation with,
for instance, built-in subtract() operation.

Each mutation operator type is used to seed different faults
in a program. Let MUTs = {m1, . . . ,mn} be a set of
mutants of a program QP having specification PS. Given a
coverage criterion C, we test each mutant m ∈ MUTs , i.e.,
TPC(m, PS) = 〈TSs, res〉 (see Section IV-D); the mutant
is killed if res is failWOO or failOPO, otherwise it is not
killed (in this case, res is inconOPO). Given all the test results
MR = {〈TSs1, res1〉, . . . , 〈TSsn, resn〉}, we partition them
in three subsets:

MRfailWOO = {〈TSs, res〉 | res = failWOO}
MRfailOPO = {〈TSs, res〉 | res = failOPO}
MRinconOPO = {〈TSs, res〉 | res = inconOPO}

We can then define the mutation score (for each oracle) as:

msWOO =
|MRfailWOO |

|MUTs| −#eqMuts

msOPO =
|MRfailOPO |

|MUTs| −#eqMuts

where #eqMuts is the number of equivalent mutants. Some
equivalent mutants may not be known before test execution;
therefore, the eqMuts in the above equations refers to known
equivalent mutants. Regarding quantum programs, there is no
existing body of knowledge about equivalent mutants. Also,
there is no approach available to determine equivalent mutants
in quantum programs; therefore, we identified a few equivalent
mutants in our experiment after test execution. Thus, we
discuss our results, first without knowing about equivalent
mutants (i.e., eqMuts = 0), and then discuss the results after
text execution which resulted into identification of equivalent
mutants. We further measure the percentage of total killed
mutants as msTOTAL = msWOO +msOPO.

We also defined the average size of the test suites killing
the mutants with a given oracle as:

atWOO =

∑
〈TSs,failWOO〉∈MRfailWOO

∑
TS∈TSs |TS |

|MRfailWOO |

atOPO =

∑
〈TSs,failOPO〉∈MRfailOPO

∑
TS∈TSs |TS |

|MRfailOPO |
The total average size of test suites is calculated as follows:

atTOTAL =

∑
〈TSs,res〉∈MR

∑
TS∈TSs |TS |

|MR|
VI. EXPERIMENT DESIGN

In this section, we first present research questions (Sec-
tion VI-A), then the subject systems used in the empirical
study in Section VI-B, followed by experimental settings and
evaluation metrics in Section VI-C. A replication package
consisting of data, code, and R scripts is available online.5

5https://simula-complex.github.io/Quantum-Software-Engineering/ICST21.
html

https://simula-complex.github.io/Quantum-Software-Engineering/ICST21.html
https://simula-complex.github.io/Quantum-Software-Engineering/ICST21.html


TABLE I: Selected Quantum Programs, their Characteristics,
and Number of Mutants

Program |Q| |VDI | |VDO | Number of mutants
AG DG RG RMO

Ent 2 2 2 7 2 1 0
Swap 3 4 1 15 4 3 0
RCR 2 4 4 13 4 3 0
Inc 3 8 8 12 0 0 1
Dec 3 8 8 12 0 0 1

A. Research Questions

We will answer the following two research questions (RQs).
• RQ1 How do the three coverage criteria compare to each

other in terms of overall cost and effectiveness of testing?
• RQ2 How do the three coverage criteria compare to each

other when studying their cost-effectiveness in terms of
the two types of test oracles?

B. Subject Systems

We selected five quantum programs from [13], as summa-
rized in Table I. The first program (Ent) is the same as the
running example. Program 2 (i.e., Swap) aims to compare
two qubits. Program 3 (RCR) studies the properties of en-
tanglement related to randomness. In particular, it studies how
reading one random qubit affects the probability of reading the
second random qubit. Programs 4 and 5 (i.e., Inc and Dec)
increment and decrement qubits. The interested readers can
find details of these programs and code in [13].

Table I shows the number of qubits (|Q|), the number of
valid input values (|VDI |), and the number of valid output
values (|VDO |) for each program. We also show the number
of mutants created with each of the four categories of the
mutation operators. For instance, we have 10 mutants for Ent:
seven for AG, two for DG, and one for RG.

C. Experimental Settings and Evaluation Metrics

Recall from Section IV-B that we need to set two param-
eters, i.e., K and M for experiments. We set K = 2000
and M = 20 (so, R = 100). There is no existing guide in
the literature on how to select values of these parameters,
therefore, further investigation, either empirical or theoretical,
is needed to determine appropriate values for these parameters.
Also, we needed to select a statistical test to assess passing or
failing according to OPO. We needed a one sample test since we
want to compare one sample with a specified probability value
in test oracle. To this end, we selected one-sample Wilcoxon
signed rank test with 99% confidence interval. This means that
a sample is considered significantly different from the specified
value (e.g., the expected probability of each valid output being
0.5 for our running example), if p-value< 0.01.

For each coverage criterion and each program, we report
a total mutation score (i.e., msTOTAL) and mutation scores for
each test oracle type (i.e., msWOO and msOPO) as described in
Section V. Also, we used various cost measures related to
the number of test cases as described in Section V. We set

TABLE II: Overall Mutation Scores and Average Number of
Test Cases – RQ1

(a) Input Coverage

Program WOO OPO TOTAL

msWOO% atWOO msOPO% atOPO msTOTAL% atTOTAL

Ent 50% 1.8 30% 4000 80% 2001
Swap – – 72.8% 8000 72.8% 8000
RCR – – 80% 8000 80% 8000
Inc 69.2% 1.56 15.4% 16,000 84.6% 4924
Dec 69.2% 1 23.1% 16,000 92.3% 4924

(b) Output Coverage

Program WOO OPO TOTAL

msWOO% atWOO msOPO% atOPO msTOTAL% atTOTAL

Ent 50% 2.2 30% 4000 80% 2397
Swap – – 72.8% 31,415 72.8% 24,853
RCR – – 80% 15,212 80% 15,259
Inc 69.2% 1.1 23.1% 25,110 92.3% 8144
Dec 69.2% 1.2 15.4% 23,509 84.6% 8337

(c) Input-Output Coverage

Program WOO OPO TOTAL

msWOO% atWOO msOPO% atOPO msTOTAL% atTOTAL

Ent 50% 1.2 30% 4000 80% 122,396
Swap – – 72.8% 88,708 72.8% 68,873
RCR – – 95% 160,768 95% 160,990
Inc 69.2% 1.2 15.4% 111,402 84.6% 24,518
Dec 69.2% 1.3 15.4% 112,146 84.6% 24,690

BudgetOC in Alg. 2 and BudgetIOC in Alg. 3 both to 200, as we
think it is acceptable, considering that we had limited time to
execute all the generated test cases and 200 is relatively large.
Different budgets may affect results, so further investigation
is needed to know how to set a value for the budget.

VII. EXPERIMENT RESULTS

We present results and analysis for RQ1 and RQ2 in
Section VII-A and Section VII-B respectively. Discussions are
presented in Section VII-C, limitations in Section VII-D, and
threats to validity in Section VII-E.

A. Results and Analysis for RQ1

Table II summarizes results for each program for the three
coverage criteria. Results related to RQ1 are shown in the last
two columns of the tables under TOTAL. For Ent, we achieved
the same 80% of mutation scores for input, output, and input-
output coverage criteria with 2001, 2397, and 122,396 test
cases respectively. For Swap, we achieved the same mutation
score of 72.8% for input, output, and input-output coverage
criteria with 8000, 24,853, and 68,873 test cases. These results
suggest that there are no differences between the three cover-
age criteria for these two programs. Even the most expensive
coverage criteria, i.e., the output and input-output coverage,
couldn’t increase the mutation scores when comparing with
the input coverage, a less expensive coverage criterion.



For RCR, the input coverage and output coverage criteria
achieved the mutation score of 80% with 8000 and 15,259 test
cases respectively, whereas the input-output coverage criterion
reached a mutation score of 95% with 160,990 test cases. This
is an increase in 15% at the cost of extra 145,731 test cases
as compared to the output coverage criterion, and 152,990
number of test cases with the input coverage criterion.

For Inc, the three coverage criteria achieved the mutation
scores of 84.6%, 92.3%, and 84.6% at the cost of 4924, 8144,
and 24,518 test cases respectively. Here, we see that the output
coverage criterion achieved a higher mutation score than the
input and input-output coverage criteria. For Dec, the input,
output, and input-output coverage criteria reached the mutation
scores of 92.3%, 84.6%, and 84.6% at the cost of 4924, 8337,
and 24,690 test cases respectively. In this case, we can see that
the input coverage criterion has the highest mutation score. For
Inc and Dec, the input coverage and output coverage criteria
have higher mutation scores as compared to the expensive
input-output one. This may be due to the fact that the mutants
are killed with lower confidence since less expensive criteria
may have smaller sample sizes.

Based on the results, we can also conclude that even with
a less expensive coverage criterion (i.e., input coverage), we
managed to achieve higher mutation scores and even with
expensive coverage criteria (i.e., output and input-output cov-
erage criteria), we couldn’t manage to increase mutation scores
much except for RCR. There are two possible explanations.
First, our quantum programs are small in size as it can be
seen in Table I. Thus, we may observe differences in the
effectiveness of the coverage criteria with complex programs.
Second, the input coverage criterion is already expensive,
especially when a fault cannot be caught with WOO, since
we exercise each valid input once. As a result, for a simple
program, the effectiveness of input coverage could be high.

B. Results and Analysis for RQ2

Now, we look at the results in terms of the two test oracle
types, i.e., WOO and OPO for all the programs for the three
coverage criteria to answer RQ2. Regarding the input coverage
criterion (Table IIa), for Ent, Inc, and Dec, the mutation scores
are higher for WOO, i.e., 50%, 69.2%, and 69.2% respectively
as compared to 30%, 15.4%, and 23.1% respectively for OPO.
Similar results can be observed for the output and input-
output coverage criteria (Table IIb, Table IIc) for these three
programs, where WOO had higher mutation scores than OPO.
In general for WOO, we observed that the average number of
test cases is quite low, i.e., minimum 1 and maximum 2.2 for
these three programs. These results suggest that if the fault in
a program results in a wrong output, it can possibly be caught
with a lower number of test cases. Recall from Section IV-C
that once a wrong output is observed, test case generation
stops. This is the reason why the numbers of test cases for
WOO are smaller. For Swap and RCR, mutation scores for WOO
are shown as “–” since, for all the three coverage criteria, there
were no mutants killed with wrong outputs. Regarding OPO for
Swap, all the three coverage criteria reached the mutation score

of 72.8%, implying no differences among the three coverage
criteria in terms of mutation scores. However, in terms of cost,
the input-output coverage criterion is much more expensive
(i.e., 88,708 test cases) than the output coverage criterion
(i.e., 31,415 test cases) and the input coverage criterion (i.e.,
8000 test cases). For RCR, the input, output, and input-output
coverage criteria reached the mutation scores of 80%, 80%,
and 95% respectively implying that the input-output coverage
criterion has a higher effectiveness than the other two criteria.
However, the input-output coverage criterion has a higher cost,
i.e., 145,556 more test cases than the output coverage criterion
and 152,768 more test cases than the input coverage criterion.

In general, OPO is expensive as it can be seen in the atOPO
columns of the three tables. Based on the results, we can
conclude that with WOO the cost of finding a fault is low.
However, if certain faults cannot be found with WOO, then
the cost of finding faults with OPO could be quite higher.
However, this cost may be reduced with a proper upper limit
of test execution with OPO. For instance, we set BudgetOC
and BudgetIOC to 200, i.e., the maximum test suite size. As a
result, output and input-output coverage can have a maximum
of 400,000 test cases. This is quite a large number of test cases.
However, considering we wanted to have more confidence on
results, we used the largest sample size as possible within the
practical constraint of executing tests on quantum computer
simulator hosted by QCEngine. Finding an optimal limit on
the budget could potentially reduce the number of test cases;
however, this requires further investigation.

C. Discussion

We further study the mutants that weren’t killed by the test
suites generated from any coverage criterion for each program.
These mutants were candidates for being equivalent mutants.
To check this, we employed a simple process. We checked a
program’s state with and without a mutation just before the
final reading through the QC Engine’s step by step execution
facility [13]. In case of equivalent mutants, the magnitudes
(see Section III) of the states that determine the probabilities
of the output values remain the same, but the overall program
states were altered, e.g., with different phases that didn’t affect
the probabilities of the output values. Below, we analyze each
of the programs and provide examples.

For Ent, two mutants weren’t killed by any of the three
coverage criteria. These two mutants are about adding a Not
gate before and after the H gate on Qubit1 of our running
example. Now, let’s assume that Ent is prepared in 0 state, i.e.,
the same as in Figure 2a. Without any mutant, the program
state before reading should be as shown in Figure 2c. However,
once we add a mutant, e.g., adding a Not gate before the H
gate on Qubit1, the program state will be as shown in Figure 4.
When comparing mutated program state in Figure 4 with
program without mutation in Figure 2c, we can see that both
|0〉 and |3〉 have the same magnitudes. This means that when
read, both programs have equal probabilities of producing 0 or
3. However, the difference is on the phases of |3〉, i.e., 180 in
the mutated program, whereas 0 in the original program. Based



Fig. 4: Running example – Mutated program state

on this observation, we can conclude that with specialized
test strategies (part of our future work), one should be able
to identify differences in phases due to a fault resulting in
a phase different than expected. In general, for Ent, the two
equivalent mutants only caused differences in terms of phases
and the magnitudes remained the same.

For Swap, six mutants weren’t killed with test suites gen-
erated with any coverage criterion. All these were equivalent
mutants. In case of RCR, all the mutants were killed by test
suites generated with at least one coverage criterion except
for one equivalent mutant. For Inc, all mutants were killed by
at least one coverage criterion. For Dec, there was only one
mutant that wasn’t killed by all the three coverage criteria.
This mutant was once again an equivalent mutant.

D. Limitations

Our work is preliminary, thus it has limitations that we will
address in the future. First, we acknowledge that our coverage
criteria will face scalability issues with the increased number
of qubits. Thus, we can see the need for test optimization
approaches in combination with the coverage criteria. Second,
in our current coverage criteria, we didn’t deal with qubits’
phases (Section III) since we treated the programs as black-
box. We can see the need for more advanced coverage criteria
that can also ensure the phase coverage of qubits. Third, in
this experiment, we only performed mutation analysis with
one qubit gates and seeded one mutant at a time. Also, we
didn’t study qubit gates that manipulate phases of qubits.
Thus, we see several improvements in mutation analysis in
the future: (1) Studying the effectiveness of coverage criteria
in terms of finding faults due to multiple qubits mutation
operators; (2) Higher-order mutants are also possible, i.e.,
applying more than one mutation operator simultaneously and
studying effectiveness of the coverage criteria.

E. Threats to Validity

Based on the guidelines reported in [15], we discuss threats
to validity. An internal validity threat is related to the sampling
strategies of the output coverage and input-output coverage
criteria. A sampling strategy may affect the number of test
cases to observe a desired output with a specified probability.
However, which sampling strategy to use is a research question
of its own and requires a separate experiment.

One conclusion validity threat is about the effect of the
probabilistic nature of QC in drawing conclusions. Thus, we
generated and executed test suites 2000 times (i.e., K). We
also selected M = 20. This means that we had a sample
size of 100 (i.e., K/M ) to calculate percentages of observed
outputs corresponding to each valid input. The selection of K

and M may affect results and thus we need more empirical
evaluations to select values of these parameters.

A construct validity threat is that the measures we used for
drawing our conclusions may not be sufficient. At first, we
computed the percentage of times that an output was observed
corresponding to a valid input. This is important, since we
need to compare the observed results with the specified
probabilities of outputs in program specifications. Hence, we
believe that this metric is adequate. Also, to draw more stable
conclusions, we assessed the statistical significance of the
results with the Wilcoxon test. More specifically, we compared
the percentages of observed outputs corresponding to each
valid input with the probabilities specified in the program
specifications.

An external validity threat is that the results may not be
generalizable since we used only five quantum programs. We
are aware that such a selection is inherently partial, and we
need more quantum programs with different characteristics
to generalize the results. The lack of real-world quantum
programs is a well-known challenge.

VIII. CONCLUSION AND FUTURE WORK

To test quantum programs, we proposed three coverage
criteria based on inputs and outputs of a quantum program,
together with two types of test oracles. We also provided
a procedure to determine passing and failing of test suites
with statistical analyses. These contributions all together form
our approach Quito (QUantum InpuT Output coverage). The
coverage criteria were evaluated with five quantum programs
using mutation analysis. We also presented a set of mutation
operators for quantum programs and provided definitions of
mutation scores for the two types of test oracles. Based on
the test execution results and analyses, we identified a set of
equivalent mutants for quantum programs.

In the future, we will improve the coverage criteria of Quito
in several dimensions, such as developing test minimization
methods to reduce the number of test cases across the three
coverage criteria, introducing boundary value analysis and
equivalence partitioning, and including test execution time in
our experiments. Also, we would like to investigate white-
box test coverage criteria for quantum programs. Finally, we
would like to mention that we worked with qubits with no
hardware errors. Thus, our results are valid for testing quantum
programs executed on quantum computer simulators without
simulating hardware errors. Developing testing techniques for
pure qubits is essential since such techniques ensure that
quantum programs’ faults are due to faulty logic and not due
to hardware errors. Naturally, we need to make these testing
techniques hardware error-aware in the future.
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