
Towards the In�niBand SR-IOV

vSwitch Architecture

Evangelos Tasoulas�, Ernst Gunnar Gran�, Bjłrn Dag Johnseny, Kyrre Begnumz and Tor Skeie�

�Simula Research Laboratory yOracle Corporation zOslo and Akershus University College
fvangelis, ernstgr, tskeieg@simula.no bjorn-dag.johnsen@oracle.com kyrre.begnum@hioa.no

Abstract�To meet the demands of the Exascale era and facili-
tate Big Data analytics in the cloud while maintaining �exibility,
cloud providers will have to offer ef�cient virtualized High
Performance Computing clusters in a pay-as-you-go model. As a
consequence, high performance network interconnect solutions,
like In�niBand (IB), will be bene�cial. Currently, the only way
to provide IB connectivity on Virtual Machines (VMs) is by
utilizing direct device assignment. At the same time to be scalable,
Single-Root I/O Virtualization (SR-IOV) is used. However, the
current SR-IOV model employed by IB adapters is a Shared

Port implementation with limited �exibility, as it does not allow
transparent virtualization and live-migration of VMs.

In this paper, we explore an alternative SR-IOV model for
IB, the virtual switch (vSwitch), and propose and analyze two
vSwitch implementations with different scalability characteristics.
Furthermore, as network recon�guration time is critical to make
live-migration a practical option, we accompany our proposed
architecture with a scalable and topology agnostic dynamic
recon�guration method, implemented and tested using OpenSM.
Our results show that we are able to signi�cantly reduce the
recon�guration time as route recalculations are no longer needed,
and in large IB subnets, for certain scenarios, the number
of recon�guration subnet management packets (SMPs) sent is
reduced from several hundred thousand down to a single one.

I. INTRODUCTION

There is a lot of work going on, both in academia and

the industry, to make cloud computing capable of offering

High Performance Computing (HPC). With HPC-as-a-Service,

traditional HPC users can save capital expenditure, while new

user groups that cannot afford to own a private HPC cluster,

can get on-demand access. However, the overhead imposed by

virtualization combined with the extreme performance demands

of HPC kept this idea immaterialized for a long time. During

the last ten years, the situation has improved considerably as

CPU overhead has been practically removed through hardware

virtualization support [1], [2]; memory overhead has been

signi�cantly reduced by virtualizing the Memory Management

Unit; storage overhead has been reduced by the use of fast SAN

storages or distributed networked �le systems; and network I/O

overhead has been reduced by the use of device passthrough

techniques like Single Root Input/Output Virtualization (SR-

IOV) [3]. It is now possible for clouds to accommodate virtual

HPC (vHPC) clusters using high performance interconnect

solutions and deliver the necessary performance [4], [5], [6].

In�niBand (IB) [7] is an interconnection network technology

offering high bandwidth and low latency, thus, is very well

suited for HPC and other network demanding workloads. IB

accelerates 224 HPC systems in the TOP500 supercomputers

list as of November 2014 [8], 44.8% of the list.

To ensure ef�cient virtualization, while maintaining high

bandwidth and low latency, modern IB Host Channel

Adapters (HCAs) support SR-IOV. Nevertheless, to achieve

transparent live migration of Virtual Machines (VMs) assigned

to IB HCAs using SR-IOV has proved to be challenging [5],

[6], [9]. Each In�niBand connected node has three different

addresses (LID, GUID, GID � further discussed in section II).

When a live migration happens, one or more of these addresses

changes. Other nodes communicating with the VM-in-migration

lose connectivity and try to �nd the new address to reconnect

to by sending Subnet Administration (SA) path record queries

to the IB Subnet Manager (SM) [7].

In [10] we showed that by using address caching, one do

not have to send repetitive SA queries to reconnect once a

VM is live migrated. However, in order to allow a VM to

be moved and bene�t from such a caching mechanism, each

VM should be bound to a dedicated set of IB addresses that

follows the VM when the VM migrates. With the current IB

SR-IOV Shared Port implementation [11], the VMs running

on the same hypervisor [12], share one LID address and have

dedicated GUID and GID addresses. When a VM with its

associated LID is migrated, the connectivity will be broken for

the rest of the VMs that share the same LID.

In this paper we propose two implementations of the Virtual

Switch (vSwitch) [13] architecture with different scalability

characteristics, that will allow IB subnets to support transparent

virtualization and migration of IB addresses, accompanied

with a scalable and topology agnostic dynamic network

recon�guration method to make live migrations of VMs feasible

in large vSwitch-based IB subnets.

The rest of the paper is organized as follows: Section II

gives background information on Input/Output Virtualization

(IOV) and IB addressing schemes, followed by the related

work in section III. The IB SR-IOV design overview in

section IV emphasizes the pros and cons of the vSwitch

and the Shared-Port architectures. In section V we propose

our vSwitch architectures and the dynamic recon�guration

mechanism, followed by an analytical discussion in section VI.

We implement a prototype and show the results of the

implementation and simulations in section VII, before we

conclude in section VIII.

II. BACKGROUND

In this section we describe different IOV techniques with

a particular focus on SR-IOV. IB addressing schemes are

presented as well.



A. Network I/O Virtualization

IOV is needed to share I/O resources and provide protected

access to these resources from the VMs. IOV decouples

the logical device, which is exposed to a VM, from its

physical implementation [12], [14]. Currently, there are two

widespread approaches to IOV, both having their advantages

and disadvantages:
1) Software emulation: is a decoupled front-end/back-end

software architecture. The front-end is a device driver placed in

the VM, communicating with the back-end implemented by the

hypervisor to provide I/O access. The physical device sharing

ratio is high and live migrations of VMs are possible with just

a few milliseconds of network downtime [17], but software

emulation introduces additional computational overhead.
2) Direct device assignment: involves a coupling of I/O

devices to VMs, with no device sharing between VMs. Direct

assignment, or device passthrough, provides near to native

performance with minimum overhead. The physical device

bypasses the hypervisor and is directly attached to the VM.

The downside is limited scalability, as there is no sharing;

one physical network card is coupled with one VM. Single

Root IOV (SR-IOV) allows a physical device to appear through

hardware virtualization as multiple independent lightweight

instances of the same device. These instances can be assigned

to VMs as passthrough devices, and accessed as Virtual

Functions (VFs) [3]. The hypervisor accesses the device through

a unique (per device), fully featured Physical Function (PF).

SR-IOV eases the scalability issue of pure direct assignment.

Currently, there is no easy way to live-migrate VMs without a

network downtime in the order of seconds when using direct

device assignment [15].
HPC interconnection networks rely heavily on hardware of-

�oading and bypassing of the protocol stack and the OS kernel

to ef�ciently reduce latency and increase performance [16].

Thus, currently the only option to provide high performance

networking in VMs, is to use a direct device assignment

technique. To still be scalable, we, as others working with

IB and virtualization [4], [6], [9], chose to use SR-IOV to

work with.
Unfortunately, direct device assignment techniques pose a

barrier for cloud providers if they want to use transparent

live migrations for data center optimization. The essence of

live migration is that the memory contents of a VM are

copied to a remote hypervisor. Then the VM is paused at

the source hypervisor, and the VM’s operation is resumed at

the destination. When using software emulation methods, the

network interfaces are virtual so their internal states are stored

into the memory and gets copied as well. Thus the downtime

could be brought down to a few milliseconds [17]. In the case

of direct device assignment like SR-IOV VFs, the complete

internal state of the network interface cannot be copied as it

is tied to the hardware [5]. The SR-IOV VFs assigned to a

VM will need to be detached, the live migration will run, and

a new VF will be attached at the destination. In the case of

In�niBand and SR-IOV, this process will introduce downtime

in the order of seconds as discussed by Guay et al. [9], [18].

Moreover, with the currently implemented SR-IOV Shared Port

model the addresses of the VM will change after the migration,

causing additional overhead in the SM and a negative impact

on the performance of the underlying network fabric [10].

B. The In�niBand Addressing Schemes

In�niBand uses three different types of addresses [7], [19],

[9]. First is the 16 bits Local Identi�er (LID). At least one

unique LID is assigned to each HCA port and each switch by

the SM. The LIDs are used to route traf�c within a subnet. Since

the LID is 16 bits long, 65536 unique address combinations can

be made, of which only 49151 (0x0001-0xBFFF) can be used

as unicast addresses. Consequently, the number of available

unicast addresses de�nes the maximum size of an IB subnet.

Second is the 64 bits Global Unique Identi�er (GUID)

assigned by the manufacturer to each device (e.g. HCAs and

switches) and each HCA port. The SM may assign additional

subnet unique GUIDs to an HCA port, which is particularly

useful when SR-IOV is used.

Third is the 128 bits Global Identi�er (GID). The GID

is a valid IPv6 unicast address, and at least one is assigned

to each HCA port and each switch. The GID is formed by

combining a globally unique 64 bits pre�x assigned by the

fabric administrator, and the GUID address of each HCA port.

III. RELATED WORK

Guay et al. [9] migrate VMs with SR-IOV VFs. The vGUID

of the SR-IOV VF is migrated together with the VM, but

the LID address changes. The main goal of their work is to

reestablish the communication after a VM has been migrated

and the LID address has changed, with the intention to

reduce VM migration downtime and avoid recon�guring the

network. Tasoulas et al. [10] migrate VMs with IB VFs and all

three addresses, and use a caching mechanism to reestablish

connectivity without having to send SA PathRecord queries.

A prototype is used to orchestrate the migration process of the

IB addresses and the SM is restarted in order to migrate the

LID of the VM and trigger the network recon�guration.

In general, when a lossless network is recon�gured, routes

have to be recalculated and distributed to all switches, while

avoiding deadlocks. Note that the coexistence of two deadlock

free routing functions, the Rold and Rnew, during the transition

phase from the old to the new one, might not be deadlock

free [20]. Zafar et al. [21] discusses the tools and applicable

methods on IB architecture (IBA), that would allow the

implementation of the Double Scheme [22] recon�guration

method. The Double Scheme is using Virtual Lanes (VLs) to

separate the new and the old routing functions. Lysne et al. [23]

use a token that is propagated through the network to mark

a recon�guration event. Before the token arrives on a switch,

traf�c is routed with the old routing algorithm. After the token

arrives and forwarded through the output ports of the switch, the

traf�c is �owing with the new routing algorithm. The Skyline

by Lysne et al. [24], speeds up the recon�guration process by

providing a method for identifying the minimum part of the

network that needs to be recon�gured. Sem-Jacobsen et al. [25]



SR-IOV

Context

PF

VF1 VF2 VFn

LID:x

GID:a

PF: Handled by Hypervisor VFs: Assigned on VMs

GID:b GID:c

LID:x LID:x

QP0

QP1

QP0

QP1

QP0

QP1

QP0

QP1

Shared Port

Fig. 1. In�niBand SR-IOV Shared Port architecture

use the channel dependency graph to create a channel list that is

rearranged when traf�c needs to be rerouted. The rearranging is

happening in such a way, that no deadlocks can occur. Robles-

G·omez et al. [26] use close up*/down* graphs to compute

a new routing algorithm which is close to the old one, and

guarantees that the combination of old and new routing during

transition do not allow deadlocks to be introduced. Berm·udez

et al. [27] are concerned with the long computation time it

takes to compute optimal routing tables in large networks, that

consequently delays the IB subnet from becoming operational.

They use some quickly calculated, but not optimal, provisional

routes and they calculate of�ine the optimal routes. Since the

provisional and the optimal routes are calculated based on the

same acyclic graph, deadlock freedom is guaranteed. [27],

as well as the rest of the surveyed work, does not consider

recon�guration of dynamic virtualized environments, and in

particular does not consider nodes and node IDs that move

inside the network.

IV. INFINIBAND SR-IOV DESIGN OVERVIEW

The Shared Port and vSwitch architectures have been

suggested by Liss [13]. Only the former one is currently

implemented in the IB drivers [11]. In this section, we discuss

these two architectures.

A. SR-IOV Shared Port

The Shared Port architecture is illustrated in Fig. 1. The

HCA appears as a single port in the network with a single

shared LID and shared Queue Pair1 (QP) space between the

PF and VFs, but multiple GIDs. As shown in Fig. 1, different

GIDs are assigned to the VFs and the PF, and the special QP0

and QP1 are owned by the PF. These QPs are exposed to the

VFs as well, but the VFs are not allowed to use QP0 (all SMPs

coming from VFs towards QP0 are discarded), and QP1 acts

as a proxy of the actual QP1 owned by the PF. Shared Port

allows for highly scalable data centers that are not limited by

the number of VMs, as the LID space is only consumed by

physical machines and switches in the network.

1A QP is a virtual communication port used by IB applications (consumers)
to communicate [7]. QP0 and QP1 are two special purpose QPs, used for IB
management packets only.

SR-IOV

Context

PF

VF1 VF2 VFn

LID:x

GID:a

PF: Handled by Hypervisor VFs: Assigned on VMs

GID:b GID:c

LID:y LID:z

QP0

QP1

QP0

QP1

QP0

QP1

QP0

QP1

vSwitch

vSwitch

Fig. 2. In�niBand SR-IOV vSwitch architecture

One shortcoming of the Shared Port architecture is the

inability to provide transparent live migration, hindering the

potential for �exible VM placement. As each LID is associated

with a speci�c hypervisor, and shared among all VMs residing

on the hypervisor, a migrating VM will have its LID changed

to the LID of the destination hypervisor. Furthermore, as a

consequence of the restricted QP0 access, an SM cannot run

inside a VM.

B. SR-IOV vSwitch

In the vSwitch architecture (Fig. 2) each VF is a complete

vHCA, meaning that the VM is assigned a complete set of

IB addresses (section II-B) and a dedicated QP space in the

hardware. For the rest of the network and the SM, the HCA

looks like a switch with additional nodes connected to it;

the hypervisor uses the PF and the VMs use the VFs, as

shown in Fig. 2. The vSwitch architecture provides transparent

virtualization, but at the cost of consuming additional LID

addresses. When many LID addresses are in use, more

communication paths have to be computed by the SM and

more Subnet Management Packets (SMPs) have to be sent to

the switches in order to update their Linear Forwarding Tables

(LFTs). In particular, the computation of the communication

paths might take several minutes in large networks [28].

Moreover, as each VM, physical node, and switch occupies

one LID each, the number of physical nodes and switches in

the network limits the number of active VMs, and vice versa.

Recall that the LID space is limited to 49151 unicast LIDs.

Nevertheless, transparent virtualization is a key feature for

virtualized data centers with live migration support.

V. PROPOSED VSWITCH ARCHITECTURE

Transparent virtualization offered by the vSwitch architecture

is important in dynamic virtualized cloud environments. When

live migrations take place, each VM should be able to carry

with it all of its associated addresses to the destination,

something not possible with the Shared Port architecture. In

this section, we propose two alternative implementations of the

vSwitch architecture with different scalability characteristics,

and provide a method for scalable dynamic recon�guration as

VMs are live migrated with their addresses.



I2C

1
2

3
4

5
6

7
8

UID

I2C

1
2

3
4

5
6

7
8

UID

I2C

1
2

3
4

5
6

7
8

UID

I2C

1
2

3
4

5
6

7
8

UID

PF

VF1 VF2 VF3

vSwitch

5

6 7 8

Hypervisor 2

PF

VF2 VF3

vSwitch

9

11 12

VM4

VF1

10

Hypervisor 3

PFvSwitch

1

VF1

2

VM1 VM2 VM3

VF2

3
VF3

4

Hypervisor 1
Fig. 3. vSwitch - Prepopulated LIDs. Assigned LIDs 1-12.

A. vSwitch with Prepopulated LIDs

Our �rst approach initializes all available VFs with LIDs,

even those VFs that are not currently used by any VM, as shown

in Fig. 3. In such a scheme, each hypervisor will consume

one LID for itself through the PF and one more LID for

each additional VF. The sum of all the VFs available in all

hypervisors in an IB subnet, gives the maximum amount of

VMs that are allowed to run in the subnet. If we assume

16 VFs2 per hypervisor in the subnet, then each hypervisor

consumes 17 LIDs. Then, the theoretical hypervisor limit for

a single subnet is ruled by the number of unicast LIDs and is:

bTopmost Unicast LID=17c) = b49151=17c = 2891, and

the number of VMs limit is: 2891 �16 = 46256. These numbers

are actually even smaller since each switch, router, or dedicated

SM nodes in the subnet consume LIDs as well. Note that the

vSwitch does not need to occupy an additional LID as it can

share the LID with the PF.

In a vSwitch architecture with prepopulated LIDs, commu-

nication paths are computed for all the LIDs once, when the

network is booted. When a new VM needs to be started the

system does not have to add a new LID in the subnet, an

action that will cause a complete recon�guration, including

the time consuming path computation step [21], [31], [27]. All

that needs to be done is to �nd an available VM slot in one of

the hypervisors and use it. An available VM slot is equivalent

to an available VF. Another gain of this proposed method is

the ability to calculate and use different paths to reach different

VMs hosted by the same hypervisor. Essentially, imitating the

LID Mask Control (LMC) feature to provide alternative paths

towards one physical machine, without being bound by the

limitation of the LMC that requires the LIDs to be sequential.

The freedom to use non-sequential LIDs is particularly useful

when a VM needs to be migrated and carry its associated LID

to the destination.

On the negative side, the initial computation of the paths

will require considerably more time than what it would need

without the prepopulation of all LIDs. In the previous example

with 16 VFs per hypervisor, when no VMs are running, the

initial path computation needs to calculate paths for close to

2Up to 126 VFs are supported on the Mellanox ConnectXfi-3 adapters, but
16 are enabled by default [29]. Nonetheless, the max number of VFs may be
even smaller as it depends on the PCI Base Address Registers (BAR) size and
the available system resources [30].

I2C

1
2

3
4

5
6

7
8

UID

I2C

1
2

3
4

5
6

7
8

UID

I2C

1
2

3
4

5
6

7
8

UID

I2C

1
2

3
4

5
6

7
8

UID

PF

VF1 VF2 VF3

vSwitch

2

Hypervisor 2

PF

VF2 VF3

vSwitch

3

VM4

VF1

9

Hypervisor 3

PFvSwitch

1

VF1

5

VM1 VM2 VM3

VF2

7
VF3

11

Hypervisor 1
Fig. 4. vSwitch - Dynamic LID assignment. Assigned LIDs: 1,2,3,5,7,9,11.

3000 LIDs. However, the actual paths to be computed are

based on more than 49000 LIDs. Also, there is a strict limit on

the number of physical nodes in the network and the number

of SR-IOV VFs. The summation of the physical nodes (e.g.

switches, hypervisors, additional SM nodes) and VFs cannot

exceed the unicast LID limit, even if there are no VMs running

on the network. On the other extreme, if all of the VFs are

occupied by running VMs, there is no option for optimizations

by using live migrations, leading to a potentially fragmented

network.

B. vSwitch with Dynamic LID Assignment

Our second approach dynamically assigns LIDs as illustrated

in Fig. 4. With the dynamic LID assignment, the initial path

computation will be substantially reduced. Refer to the example

given in section V-A, when the network is booting for the �rst

time and no VMs are present, then less than 3000 LIDs will

be used for the initial path calculation and LFT distribution.

However, when using this method and a new VM is created, a

unique free unicast LID has to be used. In this case, a challenge

arises because there are no known paths in the network for

handling the newly added LID and VM. Computing a new

set of paths in order to handle the newly added VM is not an

option in a dynamic environment where several VMs may be

booted every minute. In large IB subnets, computing a new set

of routes can take several minutes, and this procedure would

have to repeat each time a new VM is booted.

Fortunately, since we know that all the VFs in a hypervisor

share the same uplink with the PF, there is no need to compute

a new set of routes. It is only needed to iterate through the

LFTs of all the physical switches in the network, copy the

forwarding port from the LID entry that belongs to the PF

of the hypervisor �where the VM is created� to the newly

added LID, and send a single SMP to update the corresponding

LFT block of the particular switch.

When comparing the LIDs assigned on VMs on each

hypervisor in Fig. 3 and Fig. 4, notice that the LIDs assigned

to the VMs in Fig. 3 are sequential, while the LIDs assigned

in Fig. 4 are spread. As there is no requirement for sequential

LIDs, this layout is a result of VMs being created and destroyed.

In the dynamic LID assignment when a new VM is created,

the next available LID is used throughout the lifetime of the

VM. In an environment with prepopulated LIDs, each VM will



inherit the LID that is already assigned to the corresponding VF,

and in a network without live migrations, VMs consecutively

attached to a given VF will always get the same LID.

The dynamic LID assignment model can resolve the draw-

backs of the prepopulated LIDs model described in V-A at the

cost of some additional network and runtime SM overhead.

Each time a VM is created, the LFTs of all the physical

switches in the subnet will need to be updated with the newly

added LID associated with the created VM. One SMP per

switch is needed to be sent for this operation. The LMC-like

functionality is also not available, because each VM is using

the same path with its host hypervisor. However, the is no

limitation on the total amount of VFs present in all hypervisors,

and the number of VFs may exceed that of the unicast LID limit.

Of course, not all of the VFs are allowed to be attached on

active VMs simultaneously if this is the case, but having more

spare hypervisors and VFs adds �exibility for disaster recovery

and optimization of fragmented networks when operating close

to the unicast LID limit.

C. Dynamic Recon�guration with vSwitches

In a dynamic cloud environment, live migrations should be

supported and be scalable. When a VM is migrated and carries

its addresses to the destination, a network recon�guration is

necessary. Migration of the virtual or alias GUIDs (vGUIDs),

and consequently the GIDs, do not pose a signi�cant burden as

they are high level addresses that do not affect the underlying

IB routing. For the migration of the vGUID, an SMP has to

be sent to the destination hypervisor in order to set the vGUID

that is associated with the incoming VM, to the VF that will be

assigned to the VM when the migration is completed. However,

migration of the LID is not that simple, because the routes

have to be recalculated and the LFTs of the physical switches

recon�gured. Recalculation of the routes needs a considerable

amount of time in the order of minutes on large subnets, posing

scalability challenges that may render VM migrations unusable.

The vSwitch has the property that all the VFs of an HCA

share the link with the PF. Our topology agnostic dynamic

recon�guration mechanism utilizes this property in a novel

way to make the recon�guration highly ef�cient in dynamic

environments. The LID recon�guration time is minimized by

completely eliminating the path computation, and drastically

reducing the path distribution. The method differs slightly for

the two proposed vSwitch architectures, but the basis is the

same, and as presented in algorithm 1 involves two steps:

a Update of the LIDs in the participating hypervisors:

one SMP is sent to each of the hypervisors that participate

in the live migration, instructing them to set/unset the LID

to the corresponding VF.

b Update of the LFTs on the physical switches: one or a

maximum of two SMPs are sent on one or more switches,

forcing them to update their corresponding LFT entries

to re�ect the new position of the migrated VM.

1) Recon�guration with Prepopulated LIDs: For the vSwitch

architecture with Prepopulated LIDs, paths exist for all of the

LIDs even if VMs are not running. In order to migrate the LID

Algorithm 1 Migrate VM and recon�gure the network.

1: procedure UPDATELFTBLOCK(LFTBlock, Switch)
2: // If the LFT block needs to be updated send SMP on the switch to
3: // update the LFTBlock. When Swapping LIDs (V-C1), 1 or 2 of all
4: // the LFT Blocks may need to be updated per switch. When copying
5: // LIDs (V-C2), only 1 of all the LFT Blocks may need to be updated
6: // per switch.

7: if LFTBlock in Switch needs to be updated then
8: Send SMP on Switch to update LFTBlock
9: end if

10: end procedure

11: procedure UPDATELFTBLOCKSONALLSWITCHES
12: /* Iterate through all LFTBlocks on all Switches
13: * and update the LFTBlocks if needed. */

14: for LFTBlock in All LFTBlocks do
15: for sw in All switches do
16: UPDATELFTBLOCK(LFTBlock, sw)
17: end for
18: end for
19: end procedure

20: procedure MIGRATEVM(VM, DestHypervisor)
21: Detach IB VF from VM
22: Start live migration of VM to the DestHypervisor
23: /* Recon�guration of the network is following */
24: // The migration procedure of the LID address slightly
25: // differs in V-C1 and V-C2.
26: /* Step described in enumeration V-C-a */

27: Migrate the IB addresses of VM
28: /* Step described in enumeration V-C-b */

29: UPDATELFTBLOCKSONALLSWITCHES

30: end procedure

31: procedure MAIN

32: MIGRATEVM(VM to be Migrated, toHypervisor)
33: end procedure

and keep the balancing of the initial routing, what needs to be

done is to swap two LFT entries on all switches; The entry

of the LID that is assigned to the VM, with the LID of the

VF that is going to be used at the destination hypervisor after

the live migration is completed. If VM1 with LID 2 in Fig. 5

needs to be migrated from hypervisor 1 to hypervisor 3, and

VF3 with LID 12 on hypervisor 3 is available and decided to

be attached to VM1, the LFTs of the upper left switch in Fig. 5

should be changed as shown. Before the migration LID 2 was

forwarded through Port 2, and LID 12 was forwarded through

Port 4. After the migration LID 2 is forwarded through Port

4, and LID 12 is forwarded through Port 2. In this case, only

one SMP needs to be sent for this update because LFTs are

updated in blocks of 64 LIDs per block (further explained in

section VI), and both LID 2 and 12 are part of the same block

that includes the LIDs 0 - 63. If the LID of VF3 on hypervisor

3 was 64 or greater, then two SMPs would need to be sent

as two LFT blocks would have to be updated: the block that

contains LID 2 (the VM LID) and the block that contains the

LID to be swapped that is bigger than 63. The same swapping

procedure is used to update all the switches that need to be

updated (as explained in more detail in section VI).

2) Recon�guration with Dynamic LID Assignment: For the

vSwitch architecture with Dynamic LID assignment, the path

of a VF follows the same path as the path of the corresponding



Fig. 5. LFT Updates - LID Swapping.LIDs in the LFT tables are forwarded
throughPorts.

PF of the hypervisor where the VM is currently hosted. When
a VM moves, the system has to �nd the LID that is assigned
to the PF of the destination hypervisor, and iterate through all
the LFTs of all switches and update the path for the VM LID
with the path of the destination hypervisor. In contrast to the
LID swapping technique that is used in the recon�guration
with prepopulated LIDs, only one SMP needs to be sent at all
times to the switches that need to be updated, since there is
only one LID involved in the process.

VI. A NALYSIS OF THE RECONFIGURATIONMECHANISM

In this section we analyze our novel recon�guration proce-
dure and compare it with a traditional recon�guration method,
a method that would initiate a full network recon�guration for
each network change.

A. Traditional Recon�guration Cost

The time,RCt , needed for a full traditional ReCon�gration
method is the sum of the time needed for the Path Computation,
P Ct , plus the time needed for the LFTs Distribution,LF T D t ,
to all switches, as shown in equation 1:

RCt = P Ct + LF T D t (1)

The computational complexity of the paths is polynomially
growing with the size of the subnet, andP Ct is in the order
of several minutes on large subnets3 [28].

After the paths have been computed, the LFTs of the switches
have to be updated. The LFT distribution timeLF T D t grows
linearly with the size of the subnet and the amount of switches.
The LFTs are updated on blocks of 64 LIDs so in a small
subnet with a few switches and up to 64 consumed LIDs,
only one SMP needs to be sent to each switch during path

3Topology and chosen routing algorithm can have very diverse effects on
the time needed to compute the paths.

distribution. On the other extreme, in a fully populated IB
subnet with 49151 LIDs consumed, 768 SMPs per switch are
needed to be sent during path distribution.

The SMPs can use either directed routing or destination
based routing. When using directed routing, each intermediate
switch has to process and update the headers of the packet with
the current hop pointer and reverse path before forwarding the
packet to the next hop [7]. In the destination based routing, each
packet is forwarded immediately. Naturally, directed routing
adds latency to the forwarded packets. Nevertheless, directed
routing is used by OpenSM for all SMPs. This is necessary for
the initial topology discovery process where the LFTs have not
been distributed yet to the switches, or when a recon�guration is
taking place and the routes towards the switches are changing.

Let n be the number of switches in the network;m the
number of all LFT Blocks that will be updated on each switch,
determined by the number of consumed LIDs;k the average
time needed for each SMP to traverse the network before
reaching each switch4; and r the average time added for each
SMP due to the directed routing. Assuming no pipelining, if
we break the LFT distribution timeLF T D t further down we
get equation 2:

LF T D t = n � m � (k + r ) (2)

From equation 1 and 2, we get equation 3:

RCt = P Ct + n � m � (k + r ) (3)

In large subnetsP Ct � LF T D t , even though theLF T D t

becomes larger when more LIDs, and consequently more LFT
Blocks per switchm are used, and when more switchesn are
present in the network. Then � m part in equation 2 and 3
de�nes the total number of SMPs that needs to be sent for the
recon�guration.

B. Recon�guration Cost when Live Migrating with vSwitches

Using traditional recon�guration techniques would render
VM migrations unusable. In large subnets, theP Ct in equa-
tion 3 becomes very large and dominatesRCt . If a live
migration triggered a full traditional recon�guration, it would
take several minutes to complete.

In our recon�guration mechanism when vSwitches are used,
we eliminateP Ct since we use the already calculated paths
to swap or copy LID entries in the LFT of each switch.
Furthermore, there is no need to sendm SMPs per switch,
because when a VM is migrated only one or a maximum of
two LIDs are affected depending on which of the proposed
vSwitch schemes is used, regardless of the total number of
LFT blocks. As a result, onlym0 2 f 1; 2g SMPs are needed
to be sent to the switches for each migration (m0 = 2 if the
two LID entries are not located in the same LFT block when
the LIDs are prepopulated, otherwisem0 = 1 ). Also there are
certain cases that0 < n 0 < n switches will need to be updated.

4Switches closer to the SM can be reached faster as they traverse less
intermediate switches and cables.








