AuthorsV. Naumova and K. Schnass
EditorsP. Maragos and S. Theodoridis
TitleDictionary Learning from Incomplete Data for Efficient Image Restoration
AfilliationScientific Computing
Project(s)FunDaHD: Function-driven Data Learning in High Dimension, Center for Biomedical Computing (SFF)
StatusPublished
Publication TypeProceedings, refereed
Year of Publication2017
Conference Name2017 25th European Signal Processing Conference (EUSIPCO)
PublisherIEEE
ISBN Number978-0-9928626-7-1
ISSN Number2076-1465
Abstract

In real-world image processing applications, the data is high dimensional but the amount of high-quality data needed to train the model is very limited. In this paper, we extend a recently presented method for dictionary learning from incomplete data, the so-called Iterative Thresholding and $K$ residual Means for Masked data, to deal with high-dimensional data in an efficient way. In particular, the proposed algorithm incorporates a corruption model directly at the dictionary learning stage, also enabling reconstruction of the low-rank component again from corrupted signals. These modifications circumvent some difficulties associated with the efficient dictionary learning procedure in the presence of limited or incomplete data.

We choose an image inpainting problem as a guiding example, and further propose a procedure for automatic detection and reconstruction of the low-rank component from incomplete data and adaptive parameter selection for the sparse image reconstruction. We benchmark the efficacy and efficiency of our algorithm in terms of computing time and accuracy on colour and 3D medical images by comparing it to its dictionary learning counterparts.

DOI10.23919/EUSIPCO.2017.8081444
Citation Key25203

Contact person