AuthorsS. Wang, S. Ali, T. Yue and M. Liaaen
TitleIntegrating Weight Assignment Strategies with NSGA-II for Supporting User Preference Multi-Objective Optimization
AfilliationSoftware Engineering
Project(s)The Certus Centre (SFI)
StatusPublished
Publication TypeJournal Article
Year of Publication2017
JournalIEEE Transactions on Evolutionary Computation (TEVC)
PublisherIEEE
Abstract

Driven by the needs of several industrial projects on the applications of multi-objective search algorithms, we observed that user preferences must be properly incorporated into optimization objectives. However, existing algorithms usually treat all the objectives with equal priorities and do not provide a mechanism to reflect user preferences. To address this, we propose an extension—User-Preference Multi-Objective Optimization Algorithm (UPMOA), to the most commonly applied, non-dominated sorting genetic algorithm II (NSGA-II) by introducing a user preference indicator !, based on existing weight assignment strategies (e.g., Uniformly Distributed Weights (UDW)). We empirically evaluated UPMOA using four industrial problems from three diverse domains (i.e., Communication, Maritime and Subsea Oil&Gas). We also performed a sensitivity analysis for UPMOA with 625 algorithm parameter settings. To further assess the performance and scalability, 103500 artificial problems were created and evaluated representing 207 sets of user preferences. Results show that the UDW strategy with UPMOA achieves the best performance and UPMOA significantly outperformed other three multi-objective search algorithms, and has the ability to solve problems with a wide range of complexity. We also observed that different parameter settings led to the varied performance of UPMOA, thus suggesting that configuring proper parameters is highly problem-specific.