AuthorsK. Garikipati, H. Narayanan, E. M. Arruda, K. Grosh and S. Calve
EditorsP. Steinmann and G. A. Maugin
TitleMaterial Forces in the Context of Biotissue Remodelling
Publication TypeBook Chapter
Year of Publication2005
Book TitleMechanics of Material Forces
Secondary TitleAdvances in Mechanics and Mathematics
ISBN Number978-0-387-26260-4

Remodelling of biological tissue, due to changes in microstructure, is treated in the continuum mechanical setting. Microstructural change is expressed as an evolution of the reference configuration. This evolution is expressed as a point-to-point map from the reference configuration to a remodelled configuration. A "preferred" change in configuration is considered in the form of a globally incompatible tangent map. This field could be experimentally determined, or specified from other insight. Issues of global compatibility and evolution equations for the resulting configurations are addressed. It is hypothesized that the tissue reaches local equilibrium with respect to changes in microstructure. A governing differential equation and boundary conditions are obtained for the microstructural changes by posing the problem in a variational setting. The Eshelby stress tensor, a separate configurational stress, and thermodynamic driving (material) forces arise in this formulation, which is recognized as describing a process of self-assembly. An example is presented to illustrate the theoretical framework.