AuthorsS. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty and Y. Wang
TitlePoBT: A Light Weight Consensus Algorithm for Scalable IoT Business Blockchain
AfilliationCommunication Systems
Project(s)Simula Metropolitan Center for Digital Engineering, The Center for Resilient Networks and Applications
StatusPublished
Publication TypeJournal Article
Year of Publication2020
JournalIEEE Internet of Things Journal
Volume7
Issue3
Pagination2343 - 2355
Publisher IEEE
Abstract

Efficient and smart business processes are heavily dependent on the Internet of Things (IoT) networks, where end-to-end optimization is critical to the success of the whole ecosystem. These systems, including industrial, healthcare, and others, are large scale complex networks of heterogeneous devices. This introduces many security and access control challenges. Blockchain has emerged as an effective solution for addressing several such challenges. However, the basic algorithms used in the business blockchain are not feasible for large scale IoT systems. To make them scalable for IoT, the complex consensus-based security has to be downgraded. In this article, we propose a novel lightweight proof of block and trade (PoBT) consensus algorithm for IoT blockchain and its integration framework. This solution allows the validation of trades as well as blocks with reduced computation time. Also, we present a ledger distribution mechanism to decrease the memory requirements of IoT nodes. The analysis and evaluation of security aspects, computation time, memory, and bandwidth requirements show significant improvement in the performance of the overall system.

Citation Key27384