AuthorsW. Li, V. Gurev and A. D. McCulloch
TitleThe Role of Mechanoelectric Feedback in Vulnerability to Electric Shock
Afilliation, Scientific Computing
Project(s)Center for Biomedical Computing (SFF)
StatusPublished
Publication TypeJournal Article
Year of Publication2008
JournalProgress in Biophysics and Molecular Biology
Volume97
Number2-3
Pagination461-478
Date PublishedJune
Abstract

Experimental and clinical studies have shown that ventricular dilatation is associated with increased arrhythmogenesis and elevated defibrillation threshold; however, the underlying mechanisms remain poorly understood. The goal of the present study was to test the hypothesis that 1) stretch-activated channel (SAC) recruitment and 2) geometrical deformations in organ shape and fiber architecture lead to increased arrhythmogenesis by electric shocks following acute ventricular dilatation. To elucidate the contribution of these two factors, the study employed, for the first time, a combined electro-mechanical simulation approach. Acute dilatation was simulated in a model of rabbit ventricular mechanics by raising the LV end-diastolic pressure from 0.6 (control) to 4.2 kPa (dilated). The output of the mechanics model was used in the electrophysiological model. Vulnerability to shocks was examined in the control, the dilated ventricles and in the dilated ventricles that also incorporated currents through SAC as a function of local strain, by constructing vulnerability grids. Results showed that dilatation-induced deformation alone decreased upper limit of vulnerability (ULV) slightly and did not result in increased vulnerability. With SAC recruitment in the dilated ventricles, the number of shock-induced arrhythmia episodes increased by 37% (from 41 to 56) and low limit of vulnerability (LLV) decreased from 9 to 7 V/cm, while ULV did not change. The heterogeneous activation of SAC caused by the heterogeneous fiber strain in the ventricular walls was the main reason for increased vulnerability to electric shocks since it caused dispersion of electrophysiological properties in the tissue, resulting in postshock unidirectional block and establishment of reentry.

DOI10.1016/j.pbiomolbio.2008.02.020
Citation KeySimula.sc.936