Authors | M. Vagos, H. Arevalo, F. Sacco and M. Maleckar |
Title | A data-driven framework uncovers arrhythmogenic mechanisms in a 'functionally calibrated' population of models |
Afilliation | Scientific Computing |
Project(s) | AFib-TrainNet: EU Training Network on Novel Targets and Methods in Atrial Fibrillation, Center for Biomedical Computing (SFF) |
Status | Published |
Publication Type | Poster |
Year of Publication | 2017 |
Place Published | Biophysical Society 61st Annual Meeting, New Orleans, Louisiana, USA |
Abstract | Human atrial cell models have been used to establish electrophysiological properties in normal sinus rhythm (nSR) or in atrial fibrillation (AF). However, the complexity of these models makes elucidation of the mechanisms underlying arrhythmigenic behavior difficult. This study presents a data-driven methodology that can be used to identify novel arrhythmogenic mechanisms in a 'functionally calibrated' populations of models. |
Citation Key | 25393 |