AuthorsH. Spieker
TitleSoftware Testing in Continuous Integration with Machine Learning and Constraint Optimization
AfilliationSoftware Engineering
Project(s)The Certus Centre (SFI), Department of Validation Intelligence for Autonomous Software Systems
Publication TypePhD Thesis
Year of Publication2020
Degree awarding institutionUniversity of Oslo
Date Published09/2020

Frequent automated software testing is a crucial task for modern software development. It has the goal to evaluate a software's functionality and be confident about its quality after recent changes and before the integration of new features or its deployment into the actual production environment.

Further challenges are introduced when testing software for cyber-physical systems that integrate both software and dedicated hardware components, e.g. industrial robots or embedded devices.

This thesis explores how machine learning and constraint optimization can be leveraged to achieve the desired efficiency and to create an intelligent testing process. Specifically, we contribute new methodology for the test suite optimization process of test case prioritization, test case scheduling, and test case selection and assignment. All of these steps are relevant to decide which test cases are most relevant and when to execute them on which test hardware, e.g. an industrial robot. The results of this thesis have been published in international venues and are in production usage at our industrial partner, ABB Robotics Norway.


Contact person