AuthorsH. Borgli, V. Thambawita, P. H. Smedsrud, S. Hicks, D. Jha, S. L. Eskeland, K. R. Randel, K. Pogorelov, M. Lux, D. T. D. Nguyen et al.
TitleHyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
AfilliationMachine Learning
Project(s)Department of Holistic Systems
StatusPublished
Publication TypeJournal Article
Year of Publication2020
JournalScientific Data
Date Published08/2020
PublisherSpringer Nature
Keywordsdataset, GI, Machine learning
Abstract

Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine.

URLhttp://www.nature.com/articles/s41597-020-00622-y
DOI10.1038/s41597-020-00622-y
Citation Key27472

Contact person